USN

Fifth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Transmission Lines & Waveguides

Time: 3 hrs. Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Use of Smith chart is permitted.

PART - A

- 1 a. Derive expressions for voltage and current at any point on an uniform transmission line and hence deduce an expression for input impedance. (12 Marks)
 - b. A generator of 1.0 volt, 1000 cycles, supplies power to a 100-mile open wire line terminated in Z_0 and having the following parameters ($\in^{-J3.55}$ is equivalent to an angle of -3.55 radiens or -203.8 deg): R = 10.4 ohms per mile, L = 0.00367 henry per mile, $G = 0.8 \times 10^{-6}$ mho per mile, $C = 0.00835 \,\mu\text{F}$ Per mile. Find α , β , γ , λ , Z_0 , I_R , E_R and P_R (Received power).

(08 Marks)

- 2 a. Design a constant K high pass T and π -section filter to be terminated in 720 Ω having cut-off frequency of 6.8 kHz. (08 Marks)
 - b. Obtain the expression for input impedance in open and short circuited line. Plot the graph Z_{sc}/R_o versus distance and Z_{oc}/R_o versus (12 Marks)
- 3 a. Explain the applications of quarter waveline with a neat sketch. (10 Marks)
 - b. The characteristic impedance of the line is 50 Ω and SWR ρ = 2 when the line is loaded. When the line is shorted, the minima shifts 0.15 λ towards load. Determine the load impedance. Use Smith chart. (10 Marks)
- 4 a. What are the applications and properties of Smith chart? Explain briefly with a neat sketch.
 (10 Marks)
 - b. A load impedance of $Z_R = 60 j80\Omega$ is required to be matched to a 50 ohm co-axial line, by using a short circuited stub of length 'l' located to a distance 'd' from the load. The wavelength of operation is 1 meter. Find 'd' and 'l'. Show the co-axial line configuration of the stub with a neat sketch.

 (10 Marks)

PART – B

5 a. State and explain the properties of s-parameters.

(12 Marks)

- Two transmission lines of characteristic impedance z₁ and z₂ are joined at plane PP'. Express
 S-parameters in terms of impedances.

 (08 Marks)
- 6 a. Using the Helmholtz equation, derive the field equations for TM modes in rectangular waveguide. (12 Marks)
 - b. An air-filled circular waveguide having an inner radius of 1 cm is excited in dominant mode at 10 GHz (The dominant mode is TE_{11} , $X'_{11} = 1.841$. For TM_{01} , $x_{01} = 2.405$).
 - Find: (i) The cut-off frequency of dominant mode.
 - (ii) Guide wavelength.
 - (iii) Wave impedance
 - (iv) Find the bandwidth for operation in dominant mode only.

(08 Marks)

10TE54

- 7 a. With a neat sketch, explain the operation of Hybrid Tees and mention its applications.
 (10 Marks)
 - b. Explain directional coupler and obtain S-matrix of a two-hole directional coupler.

(10 Marks)

- 8 a. Explain the working of a Schottky barrier diode with a neat sketch.
 b. Distinguish between Gunn, IMPATT and BARITT diodes. (07 Marks)
 - c. A sinusoidal input signal of frequency f_s and pump signal of frequency f_p are applied across a time varying non-linear capacitance. If the output circuit is a band-pass filter with resistive series load of frequencies $f_s + f_p$, calculate the power gain. (06 Marks)

* * * * *