

Seventh Semester B.E. Degree Examination, Dec.2016/Jan.2017 Image Processing

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. With a block diagram, explain the fundamental steps involved in "Digital Image Processing" (10 Marks)
 - b. Describe briefly the principle of image formation in human eye.

(05 Marks)

c. Explain brightness adaptation with the help of suitable diagram.

(05 Marks)

2 a. What is image sampling and quantization?

(08 Marks)

b. Compute the lengths of the shortest 4, 8 and m-path between p and q for the following image segment with $V = \{1, 2\}$. (06 Marks)

5 4 3 1 1 (c) 5 4 0 2 0 3 2 0 2 4 2 1 1 3 5 (p) 1 3 5 1 3

- c. What is a distance function? Give the formula for calculating Euclidean distance and chessboard distance. (06 Marks)
- 3 a. Explain the properties of unitary transforms.

(06 Marks)

b. Calculate the transformed image V and the basis images for orthogonal matrix A and image U.
 (06 Marks)

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

- c. Construct 4×4 DFT matrix. Discuss the following properties of 2 dimensional DFT:
 - (i) Fast transform
- (ii) Conjugate symmetry

(08 Marks)

4 a. Explain Haar transformation with its properties, compute the Haar transformation of 2×2 image $F = \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix}$. (10 Marks)

b. Determine 4×4 Slant transform matrix. List its properties.

(10 Marks)

PART – B

- 5 a. Explain the following:
 - (i) Contrast stretching.
 - (ii) Bit plane slicing.(iii) Gray level slicing.

(10 Marks)

b. Perform histogram equalization of 5×5 image whose data is shown in Table Q5 (b) and draw the histogram of image before and after equalization. (10 Marks)

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0

10TE754

6 a. Explain with a block diagram, the basic steps for image filtering in frequency domain.

(10 Marks)

b. Discuss homomorphic filtering.

(10 Marks)

7 a. Explain the model of image degradation / restoration.

(10 Marks)

b. Explain observation and experimentation ways to estimate the degradation function.

(10 Marks)

8 a. Explain RGB and HSI colour models.

(10 Marks)

b. What is pseudo colour image processing? Explain intensity level slicing of assigning pseudo colours. (10 Marks)

* * * *