

T/imé:

MANGALOW

Fifth Semester B.E. Degree Examination, June/July 2016

Transmission Lines and Waveguides

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Derive the expression for general solution of a transmission line at any point along the line of any length with uniformly distributed constants. (12 Marks)
 - b. Derive equations for filter elements of a low pass constant K filter with symmetrical T-section. (08 Marks)
- 2 a. A generator of 1V, 1 kHz supplies power to a 100 km line terminated by Z_0 and has $R=10.4~\Omega/km,~L=0.00367~H/km,~G=0.8\times10^{-6}~mho/km$ and $C=0.00835~\mu F/km$. Calculate Z_0 , attenuation constant α , phase constant β , wavelength λ , velocity ν , received current, voltage and power. (06 Marks)
 - b. Explain the various distortions that occur when a wave propagates through transmission line.
 (04 Marks)
 - c. Derive the equation for voltage and current for a high frequency dissipationless line. Draw the voltage and current waveforms for open and short circuit conditions. (10 Marks)
- 3 a. Derive the relationship between standing wave ratio and reflection coefficient. (06 Marks)
 - b. Derive the equations for length and location of single stub matching device in terms of reflection coefficient. (10 Marks)
 - c. What is Smith chart? Discuss the applications and properties of Smith chart. (04 Marks)
- 4 a. Derive the equations for short circuit and open circuit impedances for quarter wave lines and half wave lines of small dissipation. (10 Marks)
 - b. A load of admittance $\frac{Y_R}{G_O} = 1.25 + j0.25$ is connected to the transmission line. Find the

length and location of single stub tuner short circuited connected to line. (10 Marks)

PART – B

5 a. Explain S-matrix representation of multiport network.

(04 Marks)

b. State and explain the properties of S-matrix.

(06 Marks)

- Two transmission lines of characteristic impedances Z_1 and Z_2 are joined at plane PP^1 . Express s-parameters in terms of impedances. (10 Marks)
- 6 a. Describe the properties and characteristics of wave guides.

(06 Marks)

- b. What are microwave cavities? Also show that cavity resonator has only one frequency of resonance for a given mode. (10 Marks)
- c. Define the following terms with necessary equations:
 - i) Cutoff frequency of waveguide
 - ii) Cutoff wavelength of waveguide
 - iii) Group velocity
 - iv) Guide wavelength

(04 Marks)

- 7 a. Starting from Maxwell's equation derive expression for various field components inside circular waveguide for TE_{mn} wave propagation. (10 Marks)
 - b. A rectangular air filled copper waveguide has dimensions of 4 cm \times 2.2 cm and length 8 cm. It operates at 8 GHz with dominant TE₁₀ mode. Determine:
 - i) Cut off frequency
- ii) Guide wavelength
- iii) Phase velocity
- iv) characteristic wave impedance
- v) Total attenuation in dB.

Assume $\sigma = 8.57 \times 10^7$ mho/m for copper.

(10 Marks)

- 8 a. With neat sketches, explain working of Gunn diode and its modes of operation. (10 Marks)
 - b. With relevant diagrams, explain IMPATT diode operation and mechanism of oscillation.
 (10 Marks)

* * * * *