Time: 3 hrs.

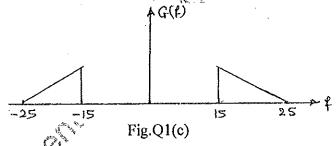
Sixth Semester B.E. Degree Examination, June/July 2016

Digital Communication

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A


- 1 a. Explain sampling theorem of low pass signals and derive the interpolation formula.

 (08 Marks)
 - b. A low pass signal x(t) has spectrum X(f) given by,

$$X(f) = \begin{cases} 1 - \frac{|f|}{200}; & |f| < 200 \\ 0 & \text{Elsewhere} \end{cases}$$

Sketch the spectrum $X_{\delta}(f)$ for |f| < 200 Hz if x(t) is ideally sampled at $f_s = 300$ Hz. (06 Marks)

c. A band pass signal g(t) with a spectrum shown in Fig. O(f(c)) is ideally sampled. Sketch the spectrum of sampled signal at $f_s = 25$ Hz and $f_s = 45$ Hz. Indicate if and how the signal can be recovered.

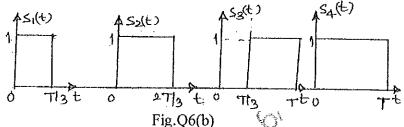
(06 Marks)

- 2 a. Derive the expression for signal to quantization noise ratio (SNR) and show that for uniform quantization, each bit in the codeword of a PCM contributes 6 dB to SNR. (08 Marks)
 - b. For a binary PCM signal, determine L if the compression parameter μ = 100 and the minimum [SNR]₀ dB = 45 dB. Determine the [SNR]₀ dB with this value of L. (06 Marks)
 c. With a near block diagram and waveform, explain time division multiplexing. (06 Marks)
- 3 a. Explain the principles of delta modulator. With relevant figure and mathematical expressions, explain the functioning of DM transmitter and receiver. (08 Marks)
 - b. For a binary sequence 111000110101 draw the digital format waveforms corresponding to:

 | Bipolar NRZ waveform and | ii) 8-ary signaling waveform. (06 Marks)
 - i) Bipolar NRZ waveform and ii) 8-ary signaling waveform. (06 Marks)

 Derive an expression for power spectral density of bipolar NRZ format and plot the same with respect to frequency. (06 Marks)
 - a. What is correlative coding? Explain duo binary coding with and without precoding.

 (08 Marks)
 - b. The binary data 011100101 are applied to the input of a modified duo binary system:
 - i) Construct the modified duo binary coder output and corresponding receiver output without a precoder.
 - ii) Suppose that due to error in transmission, the level produced by the third digit is reduced to zero. Construct a new receiver output.


 (07 Marks)
 - c. With a neat block diagram, explain the concept of adaptive equalization. (05 Marks)

PART - B

- 5 a. With neat block diagram, explain DPSK transmitter and receiver. Illustrate the generation of differentially encoded sequence for the binary input sequence 00100110011110. (12 Marks)
 - b. A binary data is transmitted over an AWGN channel using binary phase shift keying at the rate of 1 Mbps. It is desired to have average probability of error $P_e \lesssim 10^4$. Noise power spectral density is $N_{0/2} = 10^{-12}$ W/Hz. Determine the average carrier power required at the receiver input, if the detector is of coherent type. Take erfc(3.5) = 0.00025. (08 Marks)
- 6 a. Write a note on Gram-Schmidt orthogonalization procedure.

(08 Marks)

b. Consider the signal $s_1(t)$, $s_2(t)$, $s_3(t)$ and $s_4(t)$ as given below in Fig.Q6(b).

Find an orthonormal basis for these set of signals using Gram-Schmidt orthogonalization procedure.

(12 Marks)

7 a. Draw and explain the block diagram of correlation receiver.

(08 Marks)

b. Show that the probability of bit error of a matched filter receiver is given by

$$P_{e} = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_{b}}{N_{o}}}.$$

(12 Marks)

8 a. What is spread spectrum technique? How are they classified?

(08 Marks)

b. Explain properties of PN-sequence.

(06 Marks)

c. A slow FH/MFSK system has the following parameters:

The number of bits MFSK symbol = 4

The number of MESK symbols per hop = 6

Calculate processing gain of the system.

(06 Marks)