USN

Sixth Semester B.E. Degree Examination, June/July 2016

Time: 3.hrs.

Microwaves and Radar

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.

2. Use of Smith chart is permitted.

PART - A

- a. Define reflection coefficient. Derive the equation for reflection coefficient at the load end and at a distance 'd' from load end, starting from equation for Z\$. (10 Marks)
 - b. A load of 73 j80 ohms is required to be latched to 50 ohm coaxial line having operating wavelength $\lambda = 30$ cm, using a short circuited shunt stub. Determine the position and length of the stub. (10 Marks)
- 2 a. Derive the relevant equations for the propagation of TE waves in a rectangular waveguide and explain how dominant mode is obtained. (12 Marks)
 - b. What is a directional coupler? Explain the working of two hole directional coupler. (08 Marks)
- 3 a. Explain the modes of operation for Gunn diode. (10 Marks)
 - b. Explain parametric up converter with necessary equations for gain, noise figure and band width.

 (10 Marks)
- 4 a. What is a reciprocal network? For a reciprocal microwave N port network, prove that the admittance and impedance matrices are symmetrical. (07 Marks)
 - b. State and prove the following properties of S-parameters:
 - i) Symmetrical property for reciprocal network.
 - ii) Unitary property for a lossless junction.

(08 Marks)

c. The S-parameters of a two network are given by $S_{11} = 0.2 | \underline{0}^{\circ}$, $S_{22} = 0.1 | \underline{0}^{\circ}$, $S_{12} = 0.6 | \underline{90}^{\circ}$ and $S_{21} = 0.6 | \underline{90}^{\circ}$. Is the network reciprocal? Lossless? (05 Marks)

PART - B

- 5 a. Explain construction and working of a precision rotary type phase shifter, with neat diagram.
 (08 Marks)
 - b. In a H-plane T junction compute the power delivered to the loads 40 ohms and 60 ohms connected across arms 1 and 2 when 10 mW power is delivered to the matched port 3. (Assume $Z_0 = 50$ ohms).
 - c. Explain working of Magic Tee as balanced microwave mixer.

(05 Marks)

- 6 a. Explain the operation of micro strip line with its structure and Quasi TEM mode field distribution. (07 Marks)
 - b. With a neat diagram, explain the operation of parallel strip line. And also write the expressions for distributed parameters of parallel strip line; characteristic impedance and attenuation of the same. (07 Marks)
 - c. A certain shielded strip line has w = 63.5 mm, t = 35 mm and d = 180 mm. It has a permittivity of 2.56. Compute its characteristic impedance, K factor and Fringe capacitance.

- 7 a. Derive the radar range equation. Discuss the effects of each parameter on the maximum detection range of the radar. (08 Marks)
 - b. Explain Doppler frequency shift for moving targets.

(07 Marks)

- c. A marine radar operating at 10 GHz has a maximum range of 50 km. With an antenna gain of 4000. The transmitter has a power of 250 KW and a minimum detectable signal of 10⁻¹¹ Watts. Determine the cross section of the target the radar can sight. (05 Marks)
- 8 a. Explain the principle and working of moving target indicator radar, with the help of a block diagram. (10 Marks)
 - b. Write brief notes on:
 - i) Blind speed
 - ii) Delay line canceller

(10 Marks)
