

Seventh Semester B.E. Degree Examination, June/July 2016 Power Electronics

Time: 3 hrs.

Max, Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Explain the different types of power electronic converter circuits with neat circuit diagram and input and output waveforms. Also mention its application. (08 Marks)
 - b. Write the symbol and characteristic features of the following devices:

(i) BJT

(ii) TRIAC

(iii) GTO

(iv) MOSFET.

(08 Marks)

c. Discuss the peripheral effects of power electronic converters. Also write the remedies.

(04 Marks)

2 a. For the circuit shown in Fig.Q2(a), the BJT is specified to have β in the range of 12 to 75. If $V_{cc} = 40 \text{ V}$, $R_c = 1.5 \Omega$, $V_B = 6 \text{ V}$, $V_{CE(sat)} = 1.2 \text{ V}$ and $V_{BE(sat)} = 1.6 \text{ V}$ and $R_b = 0.7 \Omega$. Calculate: (i) Overdrive factor ODF (ii) Forced R_c (iii) Total power dissipation(R_c)

(07 Marks)

Fig.Q2(a)

- b. With the transient model of MOSFET explain switching characteristics. (06 Marks)
- c. What is the need for isolation for gate drive circuits? Discuss the different methods of providing isolation of gate drive circuits from power circuits. (07 Marks)
- 3 a. Explain the V-I characteristics of SCR by clearly indicating different states on characteristics. Also explain different modes of operation. (06 Marks)
 - b. With two transistor analogy of a thyristor obtain the equation for anode current. (06 Marks)
 - c. An SCR employs an R-triggering as shown in Fig.Q3(c) with $I_{g(min)}=0.1$ mA and $V_{g(min)}=0.5$ V. The diode is silicon and the peak amplitude of the input voltage is 24 volts. Determine the triggering angle α for $R=100~k\Omega$ and $R_{min}=10~k\Omega$. (04 Marks)

Fig.Q3(c)

- d. A SCR has a di/dt = 50 A/\mu sec and dv/dt = 150 V/\mu sec . It operates on a 100 V, calculate the snubber circuit elements using approximate expressions. (04 Marks)
- 4 a. With necessary circuit and waveforms explain the principle of operation of single phase semiconverter. Also derive an expression for the average output voltage. (06 Marks)
 - b. With neat circuit diagram explain the operating principle of dual converter with and without circulating current. (08 Marks)

c. A single phase half wave controlled rectifier is used to supply power to 10Ω load from 230V, 50 Hz supply at a firing angle of 30°. Calculate (i) average output voltage (ii) effective output voltage (iii) average load current. (06 Marks)

PART - B

- 5 a. What is the necessary condition for successful commutation of SCR? Compare between forced and natural commutation. (06 Marks)
 - b. With necessary circuit and waveforms explain the working of complementary commutation.

 Also perform circuit analysis. (08 Marks)
 - c. For the impulse commutated thyristor of circuit Fig.Q5(c), determine the turn-off time of the circuit, if $V_s = 200$ V, R = 10 Ω , C = 5 μF and $V_c(t = 0) = V_s$. Also derive the equations used. (06 Marks)

- 6 a. With the help of neat circuit and relevant waveforms explain the working of ON-OFF control, for single phase AC voltage controller with resistive load. Also derive an expression for RMS output voltage. (08 Marks)
 - b. A 1 ϕ half wave ac voltage controller has an input voltage of 120 V, 60 Hz and a load resistance of 10 Ω . The firing angle of thyristor is 60°. Find
 - (i) RMS output voltage (ii) Input power factor (iii) Average input current. (08 Marks)
 - What is the problem caused by sharp single pulse triggering in a 1 φ AC voltage controller when the load is inductive? How can this be solved?

 (04 Marks)
- 7 a. Briefly explain the classification of choppers with circuit, waveforms and quadrant diagrams. (08 Marks)
 - For the chopper shown in below Fig.Q7(b), DC source voltage is 200 V, load resistance is 20 Ω. Consider the voltage drop of 4 V across chopper when it is ON. For a duty cycle of 0.6, calculate (i) Average and rms value of output voltage.

Fig.Q7(b)

- c. Explain the operation of step down chopper with RL load. Also derive an expression of peak-peak output ripple current. (08 Marks)
- 8 a. Explain the principle of single phase half bridge inverter with suitable circuit and waveforms. (10 Marks)
 - b. Explain the performance parameters of inverter.

(04 Marks)

c. Explain principle of working of variable DC link inverter. Also mention advantages and disadvantages. (06 Marks)