## USN

## Seventh Semester B.E. Degree Examination, June/July 2016 Highway Geometric Design

Time (3 hrs.

Max, Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART - A

1 a. What is PCU? What are factors affecting PCU values?

(08 Marks)

- b. The following data were obtained from the spot speed studies carried out at stretch of highway during a certain period of time. Suggest
  - i) Speed limit for regulation of traffic.
  - ii) Lower speed group causing congestion.

iii) Speed for design of geometric elements.

| Speed range | No. of   | vehicles | Speed Range kmph | No. of   | vehicles |
|-------------|----------|----------|------------------|----------|----------|
| Kmph        | observed |          |                  | observed |          |
| 0 to 10     | 12       | <u>.</u> | 50 to 60         | 225      | •        |
| 10 to 20    | 18       |          | 60 to 70         | 119      |          |
| 20 to 30    | 68       |          | 70 to 80         | 43       |          |
| 30 to 40    | 29       |          | 80 to 90         | 33       |          |
| 40 to 50    | 204      |          | 90 to 100        | 09       |          |

(12 Marks)

2 a. List the payment surface characteristics and explain briefly.

(10 Marks)

- b. Write a note and mention IRC standards:
  - i) Width of formation
- ii) Right of way-IRC only for open areas.
- (10 Marks)

3 a. Derive an expression for overtaking sight distance.

(08 Marks)

- b. Find the minimum sight distance to avoid head-on collision of 2-cars approaching at 90 kmph and 60 kmph. Given: t = 2.5 secs, f = 0.7 and Brake efficiency of 50% in either case. (06 Marks)
- c. The speed of overtaking and overtaken vehicles are at 70 kmph and 40 kmph respectively. Determine overtaking sight distance. Take  $a = 0.99 \text{ m/sec}^2$ . (06 Marks)
- 4 a. Write a design procedure of evaluating super elevation as per IRC.

(06 Marks)

b. A state highway passing through a rolling terrain has a horizontal curve of radius equal to ruling minimum radius. Design all the geometric features of the curves.

Assume: V = 80 kmph, No. of lane = 2 and I = 6 m

(14 Marks)

## PART - B

5 a. Define Gradient and its types.

- (06 Marks)
- b. A vertical summit curve is formed at the intersection of two gradients, +3.0 and -5.0 percent. Design the length of summit curve to provide a stopping sight distance for a design speed of 80 kmph. Assume data as per IRC. (06 Marks)
- c. A valley curve is formed by a descending grade of 1 in 25 meeting an ascending grade of 1 in 30. Design the length of valley curve to fulfil both comfort and head light sight distance requirements for a design speed of 80 kmph. Assume allowable rate of change of centrifugal acceleration C = 0.6 m/sec<sup>3</sup>. (08 Marks)

- 6 a. Define unchannelised and channelized intersections. Write a neat sketch, of typical unchannelised and channelized intersections. (10 Marks)
  - b. What is intersection at grade? Explain the basic requirements of intersection at grade.

(10 Marks)

7 a. What are grade separated intersection? Explain their advantages.

(08 Marks)

b. What is rotary intersection? Explain the design factors of rotary.

(12 Marks)

8 a. What is highway drainage? Explain its requirements.

(08 Marks)

b. The maximum quantity of water expected in one of the open longitudinal drains on clayey soil is 0.9 m<sup>3</sup>/sec. Design the cross section and longitudinal slope of trapezoidal drain assuming the bottom width of the trapezoidal section to be 1.0 m and cross slope to be 1.0 vertical to 1.5 horizontal. The allowable velocity of flow in the drain is 1.2 m/sec and Manning's roughness co-efficient is 0.02.

\* \* \* \* \*