Time: 3 hrs.)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Seventh Semester B.E. Degree Examination, June/July 2016 **Computer Techniques in Power System Analysis**

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

- BANGALONE (iii) Tree branch path incidence matrix with (ii) Co-Tree Explain the terms: (i) Tree 1 (10 Marks) an example.
 - For the power system shown below. Select ground as reference and a tree for which the link elements are 1-2, 1-4, 2-3 and 3-4. Write the basic cut set and basic loop incidence (10 Marks) matrix. Verify the relation $C_b = -B_I^T$

Consider the power system network shown below:

Fig. Q2 (a)

The data is given below:

	Between lines	Line impedance	$\frac{y'_{pq}}{2}$	Off nominal turns ratio
1	1 – 4	0.08 + j0.37	0.007	-
2	1 6	0.123 + j0.518	0.010	-
3	2 – 3	0.723 + j1.05	0	-
4	2 – 5	0.282 + j0.64	0	
5	4 – 3	0 + j0.133	0	0.909
6	4 – 6	0.097 + j0.407	0.0076	-
7	6 - 5	0 + j0.30	0	0.976

A static shunt capacitor is connected at bus 4 with the admittance j0.005 pu. Formulate Y_{BUS} (12 Marks) by inspection method.

b. Form the Z_{BUS} for the power system shown below. Select node 1 as reference. The line (08 Marks) reactances are marked in pu.

Fig. Q2 (b)

- 3 Explain with the help of a flow chart Gauss Seidel method of load flow analysis in a power system.
 - b. Compute the line flows and line losses for a 3-Bus power system network shown below. The data obtained from load flow is as follows: (10 Marks)

Element	Bus	R	X	Bus	V	δ
No.	From To			No.	1 1	
1	1 2	0.02	0.04	1	1.05	0.0
2	1 - 3	0.01	0.03	2	0.9818	-3.5°
3	2 – 3	0.02	0.025	3	1.00125	-2.665°

In a two bus system shown in Fig. Q4 (a). The bus 1 is slack bus with $V = 1.0 \angle 0^{\circ}$ pu and bus 2 is a load bus with P = 100 MW, Q = 50 MVAr. The line impedance is (0.12 + j0.16) pu on a base of 100 MVA. Using Newton Raphson load flow method compute $|V_2|$ and δ_2 upto one iteration. (10 Marks)

Fig. Q6 (b)

Explain the algorithm with Fast Decoupled load flow analysis, clearly stating all the assumptions made. (10 Marks)

- PART B
 What is meant by economic load scheduling? Explain the Hydro and Thermal unit 5 input-output curves. (10 Marks)
 - b. A power plant has three units with following cost characteristics:

$$F_1 = 0.05P_1^2 + 21.5P_1 + 800 \text{ Rs./hr};$$
 $F_2 = 0.10P_2^2 + 27P_2 + 500 \text{ Rs./hr}$
 $F_3 = 0.07P_3^2 + 16P_3 + 900 \text{ Rs./hr}$

Find the optimum scheduling and total cost in Rs./hr for a total load demand of 200 MW. Given that $P_{imax} = 120$ MW: $P_{imin} = 39$ MW: where i = 1, 2, 3. (10 Marks)

- 6 Explain optimal scheduling of hydro-thermal plants and also explain its problem formulation. (10 Marks)
 - b. Figure shown in Fig.Q6(b) is having two plants 1 and 2 which are connected to the buses 1 2 respectively. There are two loads and 4 branches. The reference bus with a voltage of $1.0 \angle 0^\circ$ pu is shown in the diagram. The branch currents and impedances are as follows:

$$I_a = (2 - j0.5)pu; I_b = (1.6 - j0.4)pu; I_c = (1 - j0.25)pu; I_d = (3.6 - j0.9)pu;$$

$$Z_a = Z_b = (0.015 + j0.06)$$
pu; $Z_c = Z_d = (0.01 + j0.04)$ pu

Calculate the loss coefficients in the system in pu.

(10 Marks)

- a. Explain the computational algorithm for obtaining the swing curves using Runge Kutta 7 method. (10 Marks)
 - b. Explain the load models employed in multi-machine stability analysis with neat sketch.

(10 Marks)

- Explain Milne's predictor corrector method for solving the swing equation of multi-machine system. (10 Marks)
 - Explain the swing equation and its importance in stability studies.

(10 Marks)