USN						-
-----	--	--	--	--	--	---

Seventh Semester B.E. Degree Examination, June/July 2016

Industrial Drives and Applications

I/ime: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

a. What are the advantages of an electric drive system?

- (05 Marks)
- b. With a neat block diagram, explain the essential parts of electric drive.

(05 Marks)

- c. With the help of the quadrantal diagram, explain the four-quadrant operation of a motor driving a hoist load. (10 Marks)
- 2 a. Calculate the starting time of a drive with following parameters $J=10~kg-mt^2$, $T=15+0.5~w_m$ and $T_L=5+0.6~w_m$. (04 Marks)
 - b. Explain the various classes of motors duty with load diagram.

(08 Marks)

- c. Derive an expression for equivalent current I_{eq} for a fluctuating load.
- (04 Marks)
- d. The 10 min rating of a motor used in a domestic mixer is 200 Watts. The heating time constant is 40 min and the maximum efficiency occurs at full load (continuous). Determine the continuous rating.

 (04 Marks)
- a. With speed-torque characteristics, explain the plugging operation of a separately excited DC motor. (06 Marks)
 - b. With a neat circuit diagram and waveforms, explain the operation of discontinuous conduction mode for a single phase fully controlled rectifier of DC separately excited motor.
 - c. A 220 V, 1500 rpm, 10 A separately excited DC motor is fed from a single phase fully controlled rectifier with an AC source voltage of 230 V, 50 Hz, $R_a = 2\Omega$. Conduction can be assumed to be continuous. Calculate firing angles for:
 - i) Half the rated motor torque and 500 rpm.
 - ii) Rated motor torque and -1000 rpm.

(06 Marks)

- 4 a. Explain the multi quadrant operation of separately excited DC motor fed from fully controlled rectifier for the following schemes:
 - i) Single fully controlled rectifier with a reversing switch.
 - ii) Dual converter.

(08 Marks)

- b. Explain chopper control of separately excited DC motor for motoring control. (06 Marks)
- c. A 230 V, 960 rpm and 200 A separately excited DC motor has an armature resistance of 0.02Ω. The motor is fed from a chopper which provides both motoring and braking operations. The source has a voltage of 230 Volt. Assume continuous conduction mode:
 - i) Calculate duty ratio of chopper for motoring operation at rated torque and 350 rpm.
 - ii) Calculate duty ratio of chopper for braking operation at rated torque and 350 rpm.

(06 Marks)

PART - B

- 5 a. Explain the operation of a 3-phase induction motor with unbalanced voltages.
- (06 Marks)

b. Explain plugging of an induction motor.

- c. A 500 V, 3ϕ , 50 Hz, 8 pole, Y-connected induction motor has $R_1 = 0.13 \ \Omega$, $R_2 = 0.32 \ \Omega$, $X_1 = 0.6 \ \Omega$, $X_2 = 1.48 \ \Omega$, $R_0 = 250 \ \Omega$, $X_0 = 20 \ \Omega$. The full load slip is 5%. The effective stator to rotor turns ratio per phase is $\frac{1}{1.57}$. The machine is braked from full load speed by changing the stator connections and inserting an external rotor resistance, which in primary terms is 1.5 Ω /phase. Determine the initial braking torque, when the stator is disconnected from the AC supply and DC is fed into two of its terminals. (08 Marks)
- 6 a. Explain the static rotor resistance control.

(06 Marks)

b. Explain the static Kramer drive system.

(06 Marks)

- c. A Y-connected squirrel cage induction motor has the following ratings and parameters: 400V, 50 Hz, 4 pole, 1370 rpm, $R_s = 2\Omega$, $R'_r = 3\Omega$, $X_S = X'_r = 3.5\Omega$, $X_m = 55\Omega$. It is controlled by a current source inverter at a constant flux. Calculate the motor torque, speed and stator current when operating at 30 Hz and rated slip speed. (08 Marks)
- 7 a. Explain pull-in process in synchronous motor operation from fixed frequency supply.

(05 Marks)

- b. Explain the operation of a synchronous motor shifting from motoring to regenerative braking.

 (05 Marks)
- c. Explain the operation of self controlled synchronous motor drive employing load commutated thyristor inverter. (10 Marks)
- 8 a. Explain the operation of drives in paper mill.

(12 Marks)

b. Explain the operation of drives in a cement mill.

(08 Marks)

* * * * *