Fifth Semester B.E. Degree Examination, June/July 2016

Signals and Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define the following with examples i) Signals and Systems ii) Power and Energy Signals 1 (05 Marks)
 - A continuous time signal is described by

$$X(t) = t; 0 \le t \le 1$$

2-t; 1 \le t \le 2

Sketch even and odd component of the signal.

(05 Marks)

c. A continuous time signal x(t) is shown in Fig Q1(c). Plot the following signals

i)
$$x[-2(t+1)]$$
 ii) $x(\frac{t}{2}+1)$ iii) $x(-2t-1)$

(06 Marks)

- d. Check whether sequence $y(t) = \log x(n)$ is Linear, Time invariant, Memory, causal and (04 Marks) stable?
- Given input x(n) = u(n) u(n-3) and impulse response h(n) = [1, 3, 2, -1, 1]. Determine (06 Marks) the response y(n) using convolution sum.
 - Using convolution integral, determine the output of an LTI system for an input
 - $x(t) = e^{-at}$; $0 \le t \le T$ and impulse response h(t) = 1; $0 \le t \le 2T$. (08 Marks) Determine the range of 'a' and 'b' for which the LTI system with impulse response $h(n) = a^n$; $n \ge 0$ is stable

 b^n ; n < 0 is stable

- Check whether the system whose impulse response is $h(t) = e^{-t} u(t-1)$ i) Stable, Memory (04 Marks) less and causal.
- Determine the complete response of system whose difference equation is $y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1)$ with input $x(n) = 2^n$ u(n) and initial (08 Marks) conditions y(-1) = 2 and y(-2) = -1.
 - Determine the natural response of the system whose differential equation is $\frac{d^2y(t)}{dt^2} + 4y(t) = 3\frac{dx(t)}{dt}$ with initial conditions $y(0) = 1, \frac{d}{dt}y(0) = 1$ (06 Marks)
 - Draw the direct form I and direct form II implementation of the following differential equation $\frac{2d^3y(t)}{dt^3} + \frac{dy(t)}{dt} + 3y(t) = x(t).$ (06 Marks)

- State and explain following Fourier series properties. 4
 - Frequency shift

(10 Marks) ii) Convolution.

For the signal $x(t) = \sin \omega_0 t$, find the Fourier series and draw its spectrum. b.

(05 Marks)

Find the time domain signal corresponding to the DTFs coefficient

$$x(k) = \cos\left(\frac{16\pi}{17}k\right)$$
 (05 Marks)

State and explain Parsavel's theorem. 5

(06 Marks)

Obtain the Fourier transform of the following signals

i)
$$x(t) = e^{-at} u(t)$$
; $a > 0$

ii)
$$x(t) = \delta(t)$$

(08 Marks)

The impulse response of a continuous time signal is given by $h(t) = \frac{1}{R_C}$ e^{-t/RC} u(t). Find the

frequency response and plot the magnitude and phase response.

(06 Marks)

State and explain following DTFT properties i) Time shift ii) Linearity. 6

(06 Marks)

Determine the DTFT of the following signals

i)
$$x(n) = u(n)$$
 ii) $x(n) = 2^n u(-n)$.

(07 Marks)

1) x(n) = u(n) 11) $x(n) = 2^n u(-n)$. (07 Marks) Obtain frequency response and impulse response of the system described by the difference

equation
$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = 3x(n) - \frac{3}{4}x(n-1)$$
 (07 Marks)

- What is z transform? Mention properties of Region of convergence (ROC). (05 Marks) 7
 - Determine z transformation and its ROC of the following signals

i)
$$x(n) = u(n)$$

ii)
$$x(n) = \cos \Omega_0 n u(n)$$
.

(07 Marks)

Determine inverse z - transformation of following function x(z)

$$x(z) = \frac{1}{1 - 3\sqrt{z^{-1} + \frac{1}{2}z^{-2}}} \text{ for } i) |z| > 1 \qquad ii) |z| < \frac{1}{2} \qquad iii) \frac{1}{2} < |z| < 1. \quad (08 \text{ Marks})$$

a. State and prove final value theorem of z transformation.

(06 Marks)

b. Determine natural, forced and complete response of the system described by

 $y(n) - \frac{1}{2}y(n-1) = 2$ x(n) with initial conditions y(-1) = 3 and input x(n) = $2(-\frac{1}{2})^n$

(08 Marks)

c. A DT - LTI system is given by

H(z) =
$$\frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$

Specify the ROC of H(z) and determine h(n) for

- i) Stable system
- ii) Causal system

iii) Non causal system.

(06 Marks)