Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fourth Semester B.E. Degree Examination, June/July 2016

Field Theory

Max. Marks: 100

ote: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. State Gauss theorem of electrostatics. List characteristics of Gaussian surface. (05 Marks)
 - b. Determine electric flux density 'D' in Cartesian coordinates caused at p(6, 8, -10) by i) a point charge of 30 mc at origin ii) infinite line charge with $\rho_r = 40 \,\mu\text{c/m}$ ii) A surface charge with $\rho_s = 57.2 \,\mu\text{c/m}^2$ on a plane z = -9m.
 - c. Evaluate both side of divergence theorem for the region $r \le a$ (spherical coordinates) having flux density $D = \frac{5r}{3} a_r c/m^2$ (07 Marks)
- 2 a. Prove that : $E = -\nabla V$

(05 Marks)

- b. Determine work done in carrying a charge of -2C from (2, 1, -1) to (8, 2, -1) in an electric field $E = ya_x + xa_y$ v/m along the path $x = 2y^2$. (07 Marks)
- Three point charges 3 coul, 4 coul and 5 coul are to be situated at corner of an equilateral triangle of side 5 m. Find energy density at the centre of triangle. (08 Marks)
- 3 a. Derive Poisson's and Laplace equation.

(06 Marks)

- b. A potential field is given by $v = x^2yz + Ay^3z$ volts determine of 'A' such that v satisfies Laplace equation and hence find electric field E at p(2, 1, -1). (06 Marks)
- c. A spherical capacitor has a capacitance of 54 pF. It consists of two concentric spheres with inner and outer radii differing by 4 cm. Dielectric in between is air. Determine inner and outer radii. (08 Marks)
- 4 a. State and explain Ampere's circuital law.

(05 Marks)

b. Determine magnetic flux density 'B' at 'P' for a current loop shown in Fig.Q4(b). (09 Marks)

c. Clearly distinguish between scalar magnetic potential and vector magnetic potential.

PART - B

- 5 a. Derive Lorentz force equation for a moving change placed in a combined electric and magnetic field. (06 Marks)
 - b. A point charge Q = 18 nc moves with a velocity of 5×10^6 m/sec in the direction of $0.06a_x + 0.75a_y + 0.3a_z$. Determine magnitude of force experienced by the charge when placed in i) electric field $E = -3a_x + 4a_y + 6a_z$ kv/m ii) magnetic field $E = -3a_x + 4a_y + 6a_z$ mT iii) combined E and B. (08 Marks)
 - c. An air cored toroid has a cross sectional area of 6 cm², a mean radius of 15 cm and is wound with 500 turns and carries a current of 4A. Find the magnetic field intensity at the mean radius.

 (06 Marks)
- 6 a. Explain Faraday's laws applied to: i) stationary path, changing field and ii) steady field, moving circuit. (06 Marks)
 - b. List Maxwell's equations for both: i) steady and ii) Time varying fields in differential and integral form, also mention the relevant laws they demonstrate. (08 Marks)
 - c. A straight conductor of length 0.2m, lies on x-axis with one end at origin. The conductor is subjected to a magnetic flux density $B = 0.04a_y$ Tesla and the velocity $v = 2.5 \sin 10^3$ ta_z m/sec. Determine motional emf induced in the conductor. (06 Marks)
- 7 a. Derive wave equation for E in a general medium.

(06 Marks)

b. State and explain Poynting theorem.

(06 Marks)

- c. A lossless dielectric medium has $\sigma = 0$, $\mu_r = 1$ $\epsilon_r = 1$. A electromagnetic wave has field as $H = -0.1 \cos(\omega t z)a_x + 0.5 \sin(\omega t z)a_y$ A/m. Find: i) phase constant, ii) angular velocity iii) the wave impedance iv) components of electric field intensity of the wave. (08 Marks)
- 8 a. Derive an expression for transmission coefficient and reflection coefficient and relate them.

 (08 Marks)
 - b. Define standing wave ratio. Write an expression for it. (04 Marks)
 - c. Determine the amplitude of reflected and transmitted 'E' and 'H' at the interface between two regions. Characteristics of region 1 are $\varepsilon_{r_1} = 8$, $\mu_{r_1} = 0$; $\sigma_1 = 0$ and region 2 is free space. The incident E_0^i in region 1 is of 1.5 V/m. Assume normal incidence. Also find average power in two regions. (08 Marks)

* * * * *