USN

Third Semester B.E. Degree Examination, June/July 2016 **Field Theory**

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- Three point charges $Q_1 = -1 \mu c$, $Q_2 = -2 \mu c$ and $Q_3 = -3 \mu c$ are placed at the corners of an 1 equilateral triangle of side 1 m. Find the magnitude of the electric field intensity at the point (07 Marks) bisecting the joining Q1 and Q2.
 - Derive an expression for the electric field intensity due to infinite line charge. (08 Marks)
 - Let $\vec{D} = (2y^2z 8xy)\hat{a}_x + (4xyz 4x^2)\hat{a}_y + (2xy^2 4z)\hat{a}_z$. Determine the total charge within a volume of 10^{-14} m³ located at P(1, -2, 3). (05 Marks)
- Infinite number of charges each of Qnc are placed along x axis at $x = 1, 2, 4, 8, \dots, \infty$. Find the electric potential and electric field intensity at a point x = 0 due to the all charges.
 - Find the work done in assembling four equal point charges of 1 µc each on x and y axis at (06 Marks) ± 3 m and ± 4 m respectively.
 - Derive the expression for a capacitance of a parallel plate capacitor. (08 Marks)
- Explain Poisson's and Laplace's equations. 3

(06 Marks)

- Find \vec{E} at P(3, 1, 2) for the field of two co-axial conducting cylinders V = 50 V at ρ = 2 m (08 Marks) and V = 20 V at $\rho = 3\text{ m}$.
- Using Poisson's equation obtain the expression for the potential in a p-n junction. (06 Marks)
- An infinite filament on the z-axis carries 20π mA in the \hat{a}_z direction. Three uniform 4 cylindrical sheets are also present, 400 mA/m at r = 1 cm, - 250 mA/m at r = 2 cm, 400 mA/m at r=3m. Calculate H_{ϕ} at $r=0.5,\,1.5$ and 2.5 cm in cylindrical co-ordinates.

b. If the vector magnetic potential at a point in a space is given as $\vec{A} = 100 \rho^{1.5} \hat{a}_z$ wb/m, find the following: (i) \vec{H} (ii) \vec{J} and show that $\oint \vec{H} \cdot d\vec{c} = \vec{I}$ for the circular path with $\rho = 1$.

(10 Marks)

PART - B

- A conductor 4 m long lies along the y-axis with a current of 10.0 A in the \hat{a}_y direction. Find 5 the force on the conductor if the field in the region is $\vec{B} = 0.005 \ \hat{a}_z$ Tesla. (04 Marks)
 - Discuss the boundary between two magnetic materials of different permeabilities. (08 Marks)
 - A solenoid with air core has 2000 turns and a length of 5000 mm. Core radius is 40 mm. (08 Marks) Find its inductance.

- 6 a. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^{-4}$ U/m and $\epsilon_r = 81$. (04 Marks)
 - b. Given $\vec{H} = H_m e^{j(\omega t + \beta z)} \hat{a}_x$ A/m in free space. Find \vec{E} . (06 Marks)
 - c. Explain the concept of retarded potential. Derive the expressions for the same. (10 Marks)
- 7 a. The magnetic field intensity of uniform plane wave in air is 20 A/m in \hat{a}_y direction. The wave is propagating in the \hat{a}_z direction at an angular frequency of 2×10^9 rad/sec. Find:
 - (i) Phase shift constant
- (ii) Wavelength
- (iii) Frequency
- (iv) Amplitude of electric field intensity,

(08 Marks)

b. Explain electromagnetic wave in Good conductor.

(08 Marks)

c. The depth of penetration in a certain conducting medium is 0.1 m and the frequency of the electromagnetic wave is 1.0 MHz. Find the conductivity of the conducting medium.

(04 Marks)

- 8 a. Derive the expression for transmission co-efficient and reflection co-efficient. (08 Marks)
 - b. Define standing wave ratio. What value of S results is reflection coefficient equals $\pm \frac{1}{2}$?

 (06 Marks)
 - c. Given $\gamma = 0.5$, $\eta_1 = 100 \ (\Omega)$, $\eta_2 = 300 \ (\Omega)$. $E'_{x_1} = 100 \ (V/m)$. Calculate values for the incident, reflected and transmitted waves. Also show that the average power is conserved.

 (06 Marks)

2 of 2