USN	JUNE OF THE	

Third Semester MCA Degree Examination, Dec.2018/Jan.2019 Computer Graphics

Time: 3 hrs.

Note: Answer any FIVE full questions.

Max. Marks:100

		Note: Answer any FIVE full questions.	
1	a.	Explain with necessary GLUT functions how display window management is done	e.
1	u.	Explain with necessary edge is the	(10 Marks)
	b.	Explain the following OpenGL functions:	
		i) glClear (GL_COLOR_BUFFER_BIT)	
		ii) glColor3f (1.0, 0.0, 0.0)	
		iii) gluOrtho2D (xw _{min} , xw _{max} , yw _{min} , yw _{max})	
		iv) glFlush()	
		v) glClearColor (red, green, blue, alpha).	(10 Marks)
2	a.	Write Bresenham's line drawing algorithm and plot a line using Bresenham's	algorithm
		between the endpoints (20, 10) and (25, 14).	(10 Marks)
	b.	Write a program to implement midpoint circle generation algorithm.	(10 Marks)
3	a.	Explain OpenGL polygon fill-area functions with eaxample.	(10 Marks)
	b.	Explain 3D translation, scaling, rotation and reflection transformations.	(10 Marks)
4	a.	Explain the following:	
		i) General 2D pivot point rotation.	(10 Marks)
		ii) General 2D fixed point scaling.	
	b.	What is composite transformation? Show that the composition of two rotations	for $R(A_i)$
		and two scaling is multiplizative by concatenating the matrix representations	(10 Marks)
		$R(\theta_2)$ and (sx_1, sy_1) , (sx_2, sy_2) .	(10 Marks)
5	a.	Explain offline transformations.	(04 Marks)
3	а. b.	Explain transformation between coordinate system in 3D.	(06 Marks)
	c.	Write a program to create and fill the object by using boundary fill algorithm.	(10 Marks)
	٠.		
6	a.	Explain normalization and viewport transformation in 2D viewing.	(10 Marks)
	b.	Explain Nicholl-Lee-Nicholl line clipping algorithm with equations.	(10 Marks)
			440 N.K. 1-3
7	a.	Describe Sutherland Hodgeman polygon clipping algorithm with an example.	(10 Marks)
	b.	Explain the following:	
		i) Orthogonal projections	(10 M1)
		ii) Perspective projections.	(10 Marks)

8 Write short notes on:

a. Design of animation sequence

b. Traditional animation technique

c. Bezier spline curve

d. 3D viewing coordinate parameter.

CMRIT LIBRARY BANGALORE - 560 037

(20 Marks)