Second Semester MBA Degree Examination, June/July 2016

Quantitative Methods - II

Time 3 hrs.

Max. Marks: 100

Note: 1. Answer any THREE full questions from Q.No.1 to Q.No.6.

2. Question No. 7 and Q No. 8 is compulsory.

1 a. What is saddle point in Game theory?

(03 Marks)

b. Briefly explain the scope and applications of operation research.

(07 Marks)

c. Solve the following LPP by graphical method.

Max $Z = 40x_1 + 35x_2$

Subjected to $2x_1 + 3x_2 \le 60$

 $4x_1 + 3x_2 \le 96$

 $x_1 \ge 0$ and $x_2 \ge 0$

(10 Marks)

2 a. What is degeneracy in transportation problem?

(03 Marks)

A company produces 30 cars per day. The probability of daily sales quantity is given below:

Sales (units)	27	28	29	30	31	32
Probability	0.10	0.15	0.20	0.35	0.15	0.05

- b. Simulate to next 10 days using the following random number and find how many days company loses opportunity of selling cars. Random Nos: 5, 95, 18, 63, 35, 84, 7, 54, 28, 14.

 (07 Marks)
- c. A self service store employs six cashier at its customer. Every 5 minutes 9 customers arrive at an average, while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for service rate, find
 - i) Average number of customer in the system.
 - ii) Average number of customer in the Q.
 - iii) Average waiting time the customer spends in the system.
 - iv) Average time the customer wait before being served.

(10 Marks)

3 a. What are the 3 basic elements of the general structure of LP model.

(03 Marks)

b. Discuss briefly about Decision trees.

(07 Marks)

e. A small project consisting of the following Jobs where time estimate are given below:

	JOB	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
-	Time (Days)	15	15	3	5	8	12	1	14	3	14

- i) Draw a network diagram
- ii) Find float for each activity
- iii) Find critical path and project duration.

(10 Marks)

4 a. List the composition of sequencing problem.

(03 Marks)

b. A company produces 2 types of leather belts A and B. profits on the 2 types of belts are Rs 40/- and Rs 30/- per belt respectively. Each belt of type A requires twice as much time as required by belt B. If all belts are type B, the company could produce 1000 belts a day. The supply of leather is sufficient only for 800 belt per day. Belt A requires a fancy buckle and only 400 buckles are available per day. Belt B can be produced only to a maximum of 700 per day. How should the company manufacture 2 types of belts in order to maximize profit. Formulate LPP? (07 Marks)

c. Reduce the following game by dominance and find the game value

(10 Marks)

5 a. Give the main characteristic of operation Research.

(03 Marks)

b. A car service centre undertake tinkering and painting of damaged cars. It has one tinkering shop and one painting shop. Presently there are 5 cars. Time estimated for each car is given below:

Cars/work centre	1	2	3	4	5
Tinkering m/c	5	3	8	7	6
Painting m/c	4	9	2	5	10

Find the sequences that minimize the total elapsed time.

(07 Marks)

c. A project consists of 4 major jobs for which 4 contractors have submitted tenders. The tender amounts are as follows. Find the assignment, which minimize the total cost of project.

		Projects						
		Α	В	С	D			
	1	10	24	30	15			
Contractor	2	16	22	28	12			
Contractor	3	12	20	30	10			
	4	9	26	30 28 30 34	16			

(10 Marks)

6 a. Give any 3 advantages of simulation.

(03 Marks)

b. Briefly discuss about Decision under Risk and uncertainty

(07 Marks)

c. Solve the game graphically and find the value.

(10 Marks)

7 a. Draw the network diagram for the following:

Activity	Α	В	С	D	Е	F	G	Н	I
Predecessor	-	1	В	В	Α	Α	F	C, G, E	F

(05 Marks)

b. IN a toy manufactures company, suppose the product acceptance probability are not known, but the following data is known:

Draduat Agantana	Anticipated Ist year profit (000's) product line							
Product Acceptance	Full Partial		Minimal					
Good	8	70	50					
Fair	50	45	40					
Poor	-25	-10	0					

Determine the optimal Decision under each of the following decision criterion and show how you arrived at it.

i) maxmix ii) maxmin iii) equal likelihood.

(05 Marks)

- Two palyers A and B without seeing each other put a coin on table, with head or tail up. 'A' wins Rs 8/- when both coin shown head and Rs 1/- when both are tail 'B' wins Rs 3/- when the coin do not match. Giving the choice of being matching player A or non matching player B, which one would you choose and what would be your choice. (05 Marks)
- d. Find the initial basic feasible solution using least cost method for the following transportation problem.

Destination

		Α	В	C	D	Supply
Source	1	3	1	7	4	300
	2	2	6	5	9	400
	3	8	3	3	2	500
Demand	,	250	350	400	200	•

(05 Marks)

8 a. The following table shows the jobs of a network along with their time estimates:

Job	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
То	1	2	2	2	7	5	5	3	8
t _m	7	5	14	5	10	5	8	3	17
tp	13	14	26	8	19	17	29	9	32

Draw the project network and find the probability of the project completes in 40 days. (use normal distribution table z(0.8) = 0.2881) (10 Marks)

b. Solve the following transportation problem. Determine basic Fesible by VAM and optimal solution by MODI method.

•	•	I	Desti	Supply		
		D_1	D_2	D_3	D_4	
Origin	01	6	1	9	3	70
	02 03	11	5	2	8	55
	03	10	12	4	7	70
Demand		85	35	50	45	

(10 Marks)
