Fourth Semester MCA Degree Examination, June/July 2016 Data Warehousing and Data Mining

Time: 3 hrs. Note: Answer any FIVE full questions.

Max. Marks:100

- 1 a Define a datawarehouse. List and define the key features of a datawarehouse. (07 Marks)
 - b. With a neat labeled diagram briefly explain a multi-tiered architecture of a data warehouse.
 (07 Marks)
 - . Explain briefly the schemas for multi-dimensional data models. (06 Marks)
- 2 a. Define data mining. With a neat diagram explain the KDD process. (08 Marks)
 - b. List and explain the different data mining techniques used during the data preprocessing.

 (12 Marks)
- 3 a. List and explain the types of attributes with respective to qualitative and quantitative measurements. (07 Marks)
 - b. List and explain the different data mining applications. (07 Marks)
 - c. Consider:

$$x = (1, 0, 0, 0, 1, 1, 1, 1)$$

 $y = (0, 1, 1, 0, 1, 0, 0, 1).$

Evaluate simple matching coefficient (SMC) and Jaccord coefficient (JC).

(06 Marks)

- 4 a. State Apriori principle for generating itermsets that are frequent. Construct itemset lattice for itemset $I = \{I_1, I_2, I_3, I_4\}$ and list all the itemsets subsets. (10 Marks)
 - b. State the FP-growth algorithm. Construct FP-tree for the following transaction data set:

TID	Items
1	{a, b}
2	{b, c, d}
3	{a, c, d, e}
4	{a, d, e}
5	{a, b, c}
6	{a, b, c, d}
7	{a}
8	{a, b, c}
9	{a, b, d}
10	{b, c, e}

(10 Marks)

5 a. Define a decision tree induction. Give Hunt's algorithm. Construct a decision tree for the following data set:

(10 Marks)

Instance	a_1	a ₂	Target class	
1	T	T	+	
2	Т	Т	+	
3	T	F	_	
4	F	F	+	
5	F	T	_	
6	F	Т	-	

b. Write the K-nearest neighbor classification algorithm. State and explain the characteristics of nearest neighbor classifiers. (10 Marks)

13MCA442

6 a b	List and explain the other evaluation criteria for classification methods. With an example, explain the multiclass problem. Define a clustering technique. List and briefly explain the applications. Define Bisecting K—means algorithm. Explain the same for a four clusters. State the CLIQOE. Explain its strengths and limitations.		
7 a b c			
8 a b c	. Give the relative density outlier score algorithm. Explain with an example.	(07 Marks) (07 Marks) (06 Marks)	

8			