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SCHEME 
1.a {7} 
TO SHOW THAT ELECTRON DOES NOT EXIST INSIDE THE 

NUCLEUS: 

We know that the diameter of the nucleus is of the order of 10-14m.If the electron 

is to exist inside the nucleus, then the uncertainty in its position Δx cannot 

exceed the size of the nucleus  
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Now the uncertainty in momentum is  
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Then the momentum of the electron can atleast be equal to the uncertainty in 

momentum.   

                 Nsp 20105.0    

 

Now the energy of the electron with this momentum supposed to be present in 

the nucleus is given by (for small velocities -non-relativistic-case)                                 
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. The beta decay experiments have shown that the kinetic energy of the beta 

particles (electrons) is only a fraction of this energy. This indicates that 

electrons do not exist within the nucleus. They are produced at the instant of 

decay of nucleus (  


 epn     /   


enp   ). 

1.b.   {3} 

  N = P/ Eg = 2.22x1016 

2.a    {7} 

Particle in an infinite potential well problem: 

Consider a particle of mass m moving along X-axis in the region from X= 0 to 

X = a in a one dimensional potential well as shown in the diagram. The potential 

energy is assumed to be zero inside the region and infinite outside the region. 

 

                                       

 
 

Applying, Schrodingers equation for region (1) as particle is supposed to be 

present  in region (1)  
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                      Auxiliary equation is   022  xkD  

Roots are  D = +ik and D = -ik 

The general solution is  
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The boundary conditions are  

1. At x=0, 0            0C  

2. At x=a, 0            

D sin ka = 0     ka = n  ………(2) 

where n = 1, 2 3… 
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 To evaluate the constant D: 

Region (1) 

 

 

 

 

 

X = 0          X = a 

Region 
(2) 
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 Normalisation : For one dimension  
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2.b. {3} 
From Boltzmans law , 
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3a.   {7} 

Time independent Schrödinger equation 

A matter wave can be represented in complex form as  
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Differentiating wrt   x 
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From debroglie’s relation  
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Total energy of a particle  

E = Kinetic energy + Potential Energy 
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               Substituting in (2) 
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3b.  {3} 

 LASER RANGE FINDER 

Laser rangefinders have numerous applications such as   measuring of rooms 

and buildings in the construction sector, to determine the depth of snow in 

inaccessible areas, Cloud base height for atmospheric study, air pollutant 

distribution, attitude characterization of space debris, trajectory of aircraft, 

satellites. Laser technology is more cost effective.  

The laser rangefinder uses a laser signal is transmitted and returned from a 

target. The time delay between transmission and receipt of the signal is used to 

determine the distance to the target based on the speed of light. The receiver 

consists of reflector, photodetector and amplifier. 

 



3 
 

 

 

 

 

 

 

 

 

 

4.a.  {7} 

Expression for energy density: 

Induced absorption: 

It is a process in which an atom at a lower level absorbs a photon to get 

excited to the higher level. 

Let E1 and E2 be the energy levels in an atom and N1 and N2 be the number 

density in these levels respectively. Let Uγ   be the energy density of the 

radiation incident.. 

 

Rate of absorption is proportional to the number of atoms in lower state and 

also on the energy density Uγ. 

Rate of absorption = B12  N1  Uγ 

 Here B12   is a constant known as Einsteins coefficient of spontaneous 
absorption. 
Spontaneous emission: 
It is a process in which ,atoms at the higher level voluntarily get excited emitting 
a photon. The rate of spontaneous emission representing the number of such 
deexcitations is proportional to number of atoms in the excited state. 

Rate of spontaneous absorption = A21  N2   
Here B12   is a constant known as Einsteins coefficient of spontaneous 
emission. 

 
Stimulated emission: 
In this process, an atom at the excited state gets deexcited in the presence of a 
photon of same energy as that of difference between the two states.  

 

The number of stimulated emissions is proportional to the number of atoms in 

higher state and also on the energy density Uγ. 

Rate of stimulated emission = B21  N2  Uγ 

Here B21  is the constant known as Einsteins coefficient of stimulated 

emission. 

At thermal equilibrium, 

Rate of absorption = Rate of spontaneous emission + Rate of stimulated 

emission 

B12  N1  Uγ    =      A21  N2     +   B21  N2  Uγ 
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Rearranging this, we get 
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From Planck’s radiation law, 
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Comparing these expressions, we get 
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4b.   {3} 

Eigen Value 
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 For L= 1A0         E = 6.03X10-18J= 37 eV 

 

5.a.       {7} 

Carbon dioxide laser 

Construction 

1.Active medium – Mixture of CO2, N2 and He in the ratio 1:2:8. Nitrogen  

absorbs energy from the pumping source efficiently.Helium gas conducts away 

the heat and also catalyses collisional deexcitation of CO2 molecules. 

2.The discharge tube consists of a glass tube of 10-15mm diameter with a 

coaxial water cooling jacket. 

3.Partially reflecting and fully reflecting mirrors are mounted at the ends of the 

tube. 

4.Optical pumping is achieved by electric discharge caused by applying 

potential difference of over 1000V. 

 

 

Working: 

1.CO2 is a linear molecule and has three modes of vibration –Symmetric 

stretching (100), Asymmetric stretching (001) and bending (010). 

2. Asymmetric stretching (001) is the upper laser level which is a metastable 

state. (100) and (020) are the lower lasing states 

3.During electric discharge, the electrons released due to ionisation excite N2 

molecules to its first vibrational level which is close to upper lasing level of 

CO2. 

4.N2 molecules undergo collisions with CO2 molecules and excite them to 

(001). This results in population inversion. 

5.Lasing transition occurs between (001) and (100) emitting at 10.6µm and 

(001) to (020) emitting at 9.6µm 

6. CO2 molecules  deexcite to ground state through collisions with Helium  

atom. 
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5.b.  {3} 
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6a {7} 

SIMPLE HARMONIC MOTION                        
  
It is the periodic oscillations of an object caused when the restoring force on the 

object is proportional to the displacement. The restoring force is  directed 

opposite to displacement. 

Ex: 1. Oscillation of mass connected to spring  

       2. Oscilations of prongs of Tuning fork 

       3. Simple pendulum  (described in APPENDIX) 

 

                           Restoring force α – displacement 

                                              F = -k x 

 Here k is the proportionality constant known as spring constant. It represents 

the amount of restoring force produced per unit elongation and  is a relative 

measure of stiffness of the material. 
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The Solution is of the form    x(t) = A cosωot + B sinωot. 
              This can also be expressed as x(t) = C cos(ωot-ѳ) where 

22 BAC     tanѳ = B/A 
 

 
6b.   {3} 
 ω = 2pi/T=62.8rad/s 
      k=ω2m = 788.7 N/m 
7a {6} 
Expression for  Spring Constant  for  Series Combination 

 

 

Consider a load suspended through two springs with spring constants k1 and k2 
in series combination. Both the springs experience same stretching force. Let 
Δx1 and Δx2 be their elongation. 

Total elongation   is given by 
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Expression for Spring Constant  for  Parallel Combination 

 

Consider a load suspended through two springs with spring constants k1 and k2 
in parallel combination. The two individual springs both elongate by x but 
experience the load nonuniformly. 

Total load across the two springs is given by 
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7b. {4} 
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8a {7} 

Damped Oscillations 

Mechanical Case: 
In a damped harmonic oscillator, the amplitude decreases gradually due to 
losses such as friction, impedance etc. The oscillations of a mass kept in water, 
charge oscillations in a LCR  circuit are examples of damped oscillations.   Let 
us assume that in addition to the elastic force F = -kx, there is a force that is 
opposed to the velocity, F = b v where b is a constant known as resistive 
coefficient and it depends on the medium, shape of the body.  
 

 

 

 

 

 

  

 

For the oscillating mass in a medium with resistive coefficient b, the equation 
of motion is given by 
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 represents the decreasing amplitude and (ωt-ɸ) 
represents phase 

Apply Boundary conditions:  1. At  t = 0   x = xo                     2.  At  t = 0    0
dt
dx
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8b {3} 

Vmax = ω A = (2π/ T) A 

A = Vmax T/2π  = 0.31 m 

 

 
 

 
 
 

Oscillating mass in a liquid 
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