CMR INSTITUTE OF TECHNOLOGY			USN ** CMRIT ** ** ** ** ** ** ** ** **								
			I	nternal Assesme	ent tes	st I					
Sub:	Design of RC structural elements Code						Code		15CV51		
Date:	06-09-19	Duration :	90 mins	Max Marks:	50	Sem:	05	Branc	nch: CIVIL		
Note: Answer all the questions. Assume any missing data. Use of IS456 -2000 is permitted.											
							Marks	OBE			
									With	CO	RBT
1 (a) Clearly state the five differences between working stress method and					[05]	C504.1					
	limit state m	ethod.								C504.1	
										C304.1	L1
(c)	Derive stress block parameters for a singly reinforced beam. [12]						C504.1				
2 (a)	A rectangular RCC beam 300 mm wide and 500 mm deep is reinforced [12] C504.2						C504.2	L2			
with 4 bars of 16 mm dia. It is freely supported on an effective span of 6											
m. Determine the max permissible imposed service load. Assuming M 20 grade concrete & Fe-500 steel.											
										C504.2	L1

3 (a)	Find the moment of resistance of a doubly reinforced rectangular section	[07]	C504.2	L2
	230 mm wide and 450 mm effective depth with 2 bars of 20 mm diameter			
	are placed in compression side with an effective cover of 40 mm. Tension			
	steel consists of 3 bars of 25 mm diameter with an effective cover of 40			
	mm. Assume M 20 grade concrete and Fe-415 steel.			
(1)			C504.2	
(b)	Determine the moment of resistance of T beam $b_f = 1000$ mm, $D_f = 100$	[08]	C304.2	L2
	mm, $b_w = 300$ mm, effective cover = 50 mm, $d = 450$ mm, $A_{st} = 1000$			
	1963mm ² . Use M 20 and Fe-415 grade steel.			

a)

working	8tress
The e	tho 4

limit state method

- Bared on linear elastic theory
- thicker rections, uneconomiae
- * No thick on urviceality
- * Malvial strength is not fully unlized
- + deleminate approach
- " ultimate bads carnot lie preducted
- * Factor prafety
 norminable ibresses

- * land on actual stress ilram wives
 - * Chimies rection, cconomical
 - * theck on serviceality
 - * Malvia Mringth is fully cililized
- or won delemente approach
- * ultimate loads can éie reducted
- a narlial rafity factor

b) Stress-block peremeter

is uniform, but it varies with death under bending

Ut Ecu: ullimate ibrain in wherete = 0.0035

Ec: Main in concrete at yulding = 0.002

Esu: allmate itrain in itel: fy +0.002

k. = Share factor

k 2 = denth factor

143: stress factor

Mow,
$$\frac{\mathcal{E}_{Cu}}{\mathcal{E}_{c}} = \frac{0.0035}{0.002} = \frac{AD}{AE}$$

$$\frac{AE}{AD} = \frac{0.002}{0.0035}$$

$$AE = \frac{\mu}{2}AD$$

0 11 - 75

$$= \frac{AD \times DC}{AD \times DC} \left(\frac{3}{7} + \frac{2 \times U}{3 \times 4} \right)$$

$$K_{2}$$
 denth factor = $\frac{A_{1} \cdot \overline{x}_{1} + A_{2} \cdot \overline{x}_{2}}{A_{1} + A_{2}}$

A, -rais queil. rart, x, -> dulari quentrois q rellangula not of the block from top

Az -> areo of parabolic part of the elves block, \$\frac{1}{2} -> cle centions Grom lop

$$= \frac{3}{7} \times AD \times \frac{1}{2}$$

$$\bar{\alpha}_1 = \frac{3}{14} + AD$$

K/2/7 A1= DEXDC

$$A_1 = \frac{3}{7} * AD * DC$$

$$\frac{3}{3} \times AD \times DC + \frac{3}{10} \times AD \times DC + \frac{9}{10} \times AD \times DC$$

$$(\frac{3}{7} \times \frac{3}{14}) + 0 + (\frac{3}{41} + 8 \times \frac{9}{14}) + 0$$

K2.7 - 0.42AD

but he AD= x

8toess factor

compressive free = compressive Mangle + area

compressive itrengti = compressive bool fine

Wengih compressie fark = 5 = 0.67 fck

K3=0.67

is the stress factor

erior & digital de maria

3)

effective denth, d= overall denth. (clear cover + \frac{1}{2} dio q bars)

$$d = 500 - (85 + \frac{16}{3})$$

Step1: calculate depth & N.A

#96, 61.1, ISU56.2006

$$\frac{\alpha_0}{\alpha} = 0.35$$

170, IS US6-4000

De 0.35 x 0.46

: the rection is under-remforced

Steps: Jo calculate moment of Resistance

Stepu: Jo calculate woodbing moment of resistance

Mu, word = 93.29 KN-m

Step 5: Moment due to dead load

dead boad: denuty of concrete + crou rulonal are:
= 25 KH/m3 + 0.3 X D.5
= 3.75 KH/m

moment du le dead bod

Step 6: to find the imposed Service load

o) b= 230mm

d = 450mm

ABC = 9 x 11 x 90 - 698.39 mms

\$ 2" = 40mm

Ast = 3 x 1 x 252- 147 2.62 mm2

d'= 40mm

fcb = 20 Nlmm2

8y= 415 N/mm2

17u = 2

Stepl: Find xu, mox

Juimox = DiU8x450

X41max = 216 mm

Step 2: Calculate fac to a line man

for value corresponding to a desain of 0.0035 (xumex-d")

= 0.0028

.. from graph #23 A, rage 70 Is 456-2000

Stop 3: to Find depth of M.A

Stepu: Recalculate fac

fs. valu vormonding le a Main
$$90.0035 \left(\frac{2u-d''}{2u}\right)$$

= $0.0037 \left(\frac{182.23-40}{182.23}\right)$

mom granh 13, A, #70 IS 456- 2000

Steps: compare It & XUINOX

des 187.23 < 216mm

XU < XUINCX

i the rulion is under sunfried

Step 6: Jo find Mu,

Mu= Mulim + Fsr. Aschd-d11)

Mu, lim = 0.36. xu (1-0.42 xu) . b. d2- Pcb

X n'wax = Xn)

= 0.36 * 182.23 (1 - 0.40x 182.23) * 230 * 450 * 25

= 115.14 KM-m

Mu = Mu, lm + fsc. As.c (d-d")

= 112.14x10 + 327.72 x 698.37 (AZO-MD)

20 3696 x 1296 0

carring of all

edit = Fid + Ca J

Mu : 906.01KH-W

given:

Steplifind xu

Stebs: Combon In and Dt

98. Lumm < 1000mm

Ja < Dt

.. Analye the T-beam as a neclangular dearn

Step 3: calculate xu, mex

dans - one 1 Fruis du

duines = 0.48 x 450

Lumax = d16mm

Ju < Juiner

: . the ulton is und sumfred

Stepu: 70 find ultimate moment of registers

Mu = 0.87 x fy x A s + x d (1 - x s + x fy b x d x fr h)

= 0.874 415 × 1963 × 450 (1 - 1963 + 415)

Mu = 290.06KM-m