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Question
#

Description Marks Distribution Max
Marks

1

Explain the steps in designing learning systems in
detail.

Explaining all the 5steps with examples
1. Choosing the Training Experience
2. Choosing the Target Function
3. Choosing a Representation for the Target Function
4. Choosing a Function Approximation Algorithm

1. Estimating training values
2. Adjusting the weights

5. The Final Design

2M

5*2=10M
10M 10 M

2

a)

What is well- posed learning problems. Describe the
following problems with respect to Tasks,
Performance and Experience:

 Definition of well posed learning problem
 Describing the tasks, performance and E for all 3

problems

1M
3*1=3M

4 M

10 M

b)

Define Machine Learning. Explain with examples why
machine learning is important and discuss some
applications of machine learning.

 Definition of ML
 Importance of Machine Learning
 Applications of Machine Learning

1M

2M

3M

6 M

3

a)

Explain different perspective and issues in machine
learning

 Explaining any 4 issues 4M

4M

10 Mb)

Describe the Find-S algorithm. Explain the process of
finding maximally specific hypothesis for the below
dataset.

 Explaining Find-S algorithm
 Problem solving by finding specific hypothesis

2M
4M 6 M

4
Find the maximally general hypothesis and maximally
specific hypothesis for the training examples given in
the table using candidate elimination algorithm.

 Initializing specific hypothesis and generic
hypothesis

 For each positive and negative instances:
2M

10 M 10 M



 Finding the maximally specific and
generic hypothesis 8M

5

a)

Explain inductive bias through candidate elimination
algorithm.

Explaining the below with examples.
 Biased hypothesis space
 Unbiased learner
 The futility of Bias-free learning

3*2=6 M
6 M

10 M

b)
Explain List-Then-Eliminate algorithm.

Defining and explaining the algorithm

4 M
4 M

6

Find the maximally general hypothesis and maximally
specific hypothesis for the training examples given in
the table using candidate elimination algorithm.

 Initializing specific hypothesis and generic
hypothesis

 For each positive and negative instances:
Finding the maximally specific and  generic hypothesis

2 M

8 M
10 M 10M

7

a)

List the drawbacks of Find-S algorithm. Explain
candidate elimination algorithm in detail.

 Drawbacks of Find-S
 Explanation of candidate elimination algorithm

2M

3M 5M

10M

b)

What do you mean by hypothesis space, instance
space and version space?

 Defining hypothesis space, instance space
 Defining version space

1.5*2=3M

2M

5M
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1. Explain the steps in designing learning systems in detail.(10M)

Solution:
1. Choosing the Training Experience
2. Choosing the Target Function
3. Choosing a Representation for the Target Function
4. Choosing a Function Approximation Algorithm

 Estimating training values
 Adjusting the weights

5. The Final Design

1. Choosing the Training Experience:
 The type of training experience available can have a significant impact on success or

failure of the learner.

There are three attributes which impact on success or failure of the learner

1. One key attribute is whether the training experience provides direct or indirect feedback regarding the
choices made by the performance system.

 For ex in learning to play checkers the system might learn from direct training examples
consisting of individual checkers board states and correct move for each.

 Indirect information consisting of the move sequences and final outcomes of various games
played. Here the learner faces an   additional problem of credit assignment or determining
the degree to which each move in the sequence deserves credit or blame for the final
outcome.

Hence, learning from direct training feedback is typically easier than learning from indirect
feedback.

2. A second important attribute of the training experience is the degree to which the learner
controls the sequence of training examples.

 For example, the learner might rely on the teacher to select informative board states and to
provide the correct move for each.

 Alternatively, the learner might itself propose board states that it finds particularly
confusing and ask the teacher for the correct move. Or the learner may have complete
control over both the board states and (indirect) training classifications, as it does when it
learns by playing against itself with no teacher present.

3. A third important attribute of the training experience is how well it represents the distribution of
examples over which the final system performance P must be measured.

For ex in checkers game: the performance metric P is the percent of games the
system wins in the world tournament.

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how this will
be used by the performance program. Consider checkers-playing program. The program needs only to
learn how to choose the best move from among some large search space. Here we discuss two such
methods.




Method-1: Let us use the function ChooseMove: B → M
Which indicate that this function accepts any board from the set of legal board states B as input and
produces as output some move from the set of legal moves M.

ChooseMove is a key design choice for the target function in checkers example, this function will turn out
to be very difficult to learn given the kind of indirect training experience available to our system.

Method-2: An alternative target function and one that will turn out to be easier to learn in this setting is an
evaluation function that assigns a numerical score to any given board state.
Let us call this target function V and again use the notation V: B →
Which denote that V maps any legal board state from the set B to some real value in . If the system can
successfully learn such a target function V, then it can easily use it to select the best move from any
current board position.

Let us define the target value V(b) for an arbitrary board state b in B, as follows:
 if b is a final board state that is won, then V(b) = 100
 if b is a final board state that is lost, then V(b) = -100
 if b is a final board state that is drawn, then V(b) = 0
 if b is a not a final state in the game, then V(b) = V(b'), where b' is the best final board

state that can be achieved starting from b and playing optimally until the end of the
game.

3 Choosing a Representation for the Target Function

 Let’s choose a simple representation for any given representation, for any givenstate the function c is calculated as a linear combination of the following boardfeatures.
 xl: the number of black pieces on the board
 x2: the number of red pieces on the board
 x3: the number of black kings on the board
 x4: the number of red kings on the board
 x5: the number of black pieces threatened by red (i.e., which can be captured on

red's next turn)
 x6: the number of red pieces threatened by black

Thus, learning program will represent as a linear function of the form

Where w0 through w6 are the weights to be chosen by the Learning Algorithm.

4 Choosing a Function Approximation Algorithm

• In order to learn the target function f we require a set of training examples, each  describing a
specific board state b and the training value Vtrain(b) for b.

• Each training example is an ordered pair of the form (b, Vtrain(b)).
• For instance, the following training example describes a board state b in which black has won the

game (note x2 = 0 indicates that red has no remaining pieces) and for which the target function
value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)
Function approximation Procedure:1. Estimating training values2. Adjusting the weights1. Estimating training values:

 The only training information available to our learner is whether the game waseventually won or lost.
 The approach is to assign the training value of Vtrain(b) for any  intermediate boardstate b to be V^ (Successor(b))
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Rule for estimating training values:
2. Adjusting the weights:

 One common approach is to define the best hypothesis, or set of weights, as that
which minimizes the square error E between the training values and the values
predicted by the hypothesis V.

We require an algorithm that will incrementally refine the weights as new training examples
become available and that will be robust to errors in these estimated training values.
One such algorithm is called the least mean squares (LMS) training rule.

LMS Weight update rule :

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

5. The final design:

The final design of our checkers learning system can be naturally described by four distinct program
modules that represent the central components in many learning systems.

a) The Performance System is the module that must solve the given performance task, in this case
playing checkers, by using the learned target function(s). It takes an instance of a new problem
(new game) as input and produces a trace of its solution (game history) as output.

b) The Critic takes as input - history or trace of the game and produces as output - a set of training
examples of the target function.

c) The Generalizer takes as input the training examples and produces an output hypothesis that is
its estimate of the target function. It generalizes from the specific training examples,
hypothesizing a general function that covers these examples and other cases beyond the training
examples.

d) The Experiment Generator takes as input the current hypothesis (currently learned function)
and outputs a new problem (i.e., initial board state) for the Performance System to explore. Its
role is to pick new practice problems that will maximize the learning rate of the overall system.

These four modules are summarized as follows
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The sequence of design choices made for the checkers program is summarized in figure given below.

2.a. What is well- posed learning problems. Describe the following problems with respect to Tasks,
Performance and Experience: (4M)

Solution:

A computer program is said to learn from experience E with respect to  some class of tasks T and
performance measure P, if its performance at tasks in T,  as measured by P, improves with experience E.
To have a well-defined learning problem, three features needs to be identified:

1. The class of tasks
2. The measure of performance to be improved
3. The source of experience
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A checkers learning problem:
 Task T: playing checkers
 Performance measure P: percent of games won against opponents
 Training experience E: playing practice games against itself

A handwriting recognition learning problem:
 Task T: recognizing and classifying handwritten words within images
 Performance measure P: percent of words correctly classified
 Training experience E: a database of handwritten words with given  classifications

A robot driving learning problem:
 Task T: driving on public four-lane highways using vision sensors
 Performance measure P: average distance travelled before an error (as judged by  human

overseer)
 Training experience E: a sequence of images and steering commands recorded  while observing a

human driver

b. Define Machine Learning. Explain with examples why machine learning is important and discuss
some applications of machine learning. (6M)

A computer program is said to learn from experience E  with respect to some class of
tasks T and performance  measure P, if its performance at tasks in T, as measured  by P, improves with
experience E.

• Some tasks cannot be defined well, except by examples (e.g., recognizing people).
• Relationships and correlations can be hidden within large amounts of data.  Machine

Learning/Data Mining may be able to find these relationships.
• Human designers often produce machines that do not work as well as desired in the environments

in which they are used.
• The amount of knowledge available about certain tasks might be too large for explicit encoding

by humans (e.g., medical diagnostic).
• Environments change over time.
• New knowledge about tasks is constantly being discovered by humans. It may be difficult to

continuously re-design systems “by hand”.

Applications:
• Learning to recognize spoken words
• Learning to drive an autonomous vehicle
• Learning to classify new astronomical structures
• Learning to play world-class backgammon
• Learning to recognize images

3.a. Explain different perspective and issues in machine learning (4M)
 What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired function, given
sufficient training data? Which algorithms perform best for which types of problems and
representations?

 How much training data is sufficient? What general bounds can be found to relate the confidence
in learned hypotheses to the amount of training experience and the character of the learner’s
hypothesis space?

 When and how can prior knowledge held by the learner guide the process of generalizing from
examples?

 Can prior knowledge be helpful even when it is only approximately correct?
 What is the best strategy for choosing a useful next training experience, and how does the choice

of this strategy alter the complexity of the learning problem?



 What is the best way to reduce the learning task to one or more function approximation
problems?

 Put another way, what specific functions should the system attempt to learn? Can this
process itself be automated?

 How can the learner automatically alter its representation to improve its ability to represent and
learn the target function?

b. Describe the Find-S algorithm. Explain the process of finding maximally specific hypothesis for
the below dataset.

Restaurant Meal Day Cost Target Function
Sam’s Breakfast Friday Cheap Yes
Hilton Lunch Friday Expensive No
Sam’s Lunch Saturday Cheap Yes
Dannie Breakfast Sunday Cheap No
Sam’s Breakfast Sunday Expensive No

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

For each attribute constraint ai in h
If the constraint ai is satisfied by x
Then do nothing
Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

Problem:
x1 = <Sam’s,Breakfast,Friday,Cheap>, +

Observing the first training example, it is clear that our hypothesis is too specific. In  particular, none of
the "Ø" constraints in h are satisfied by this example, so each is  replaced by the next more general
constraint that fits the example

h1 = <Sam’s, Breakfast,Friday,Cheap>

x2 = <Hilton,Lunch,Friday,Expensive>, -
Since it is negative no change in h and h2 = <Sam’s, Breakfast, Friday, Cheap>

x3=<Sam’s,Lunch,Saturday,Cheap> +
Compare each instance of x3 with h2 and replace it with ?

h3= <Sam’s,?,?,Cheap>

x4=<Dannie,Breakfast,Sunday,Cheap> -ve
Since it is negative no change in h3 and h4 = <Sam’s,?,?,Cheap>

x5=<Sam’s,Breakfast,Sunday,Expensive> -ve
Since it is negative no change in h4 and h5 = <Sam’s,?,?,Cheap>

4. Find the maximally general hypothesis and maximally specific hypothesis for the training examples
given in the table using candidate elimination algorithm.

Origin Manufacturer Color Decade Type Target
Value

Japan Honda Blue 1980 Economy Y
Japan Toyota Green 1970 Sports N
Japan Toyota Blue 1990 Economy Y
USA Chrysler Red 1980 Economy N



Japan Honda White 1980 Economy Y
Japan Toyota Green 1980 Economy Y
Japan Honda Red 1990 Economy N

1. S0={0,0,0,0,0} - 2 Marks
G0={?,?,?,?,?}

2. First example d: {Japan,Honda,Blue,1980,Economy} +ve
S1= {Japan,Honda,Blue,1980,Economy}
G1={?,?,?,?,?}

Second example d: {Japan,Toyota,Green,1970,Sports} –ve
S2={Japan,Honda,Blue,1980,Economy}
Try to make each ? with different possible pairs
G2 :

{USA,?,?,?,?}{?,Honda,?,?,?}{?,Chrysler,?,?,?}{?,?,Blue,?,?}{?,?,Red,?,?}{?,?,White,?,?}
{?,?,?,1980,?}{?,?,?,1990,?}{?,?,?,?,Economy}

Try to remove inconsistent pairs and keep only consistant ones.Pairs 2,4,7 and 9 are
consistant with specific hypothesis S so keep only this and remaining pairs ignore it.

G2 : {?,Honda,?,?,?}{?,?,Blue,?,?}{?,?,?,1980,?}{?,?,?,?,Economy}

Third example d: {Japan,Toyota,Blue,1990,Economy} +ve
S3 ={Japan,?,Blue,?,Economy}
Make G3 more consistant pairs by removing less consistant pairs with Specific

hypothesis.
G3 ={?,?,blue,?,?}{?,?,?,?,Economy} because first and 3rd pair is not consistant with

specific hypothesis.

Fourth example d: {USA,Chrysler,Red,1980,Economy} -ve
S4 ={Japan,?,blue,?,Economy}
For every pair and ? in G make it specific

G4= {Japan,?,?,?,Economy} {?,Toyota,?,?,Economy} {?,Honda,?,?,Economy}
{?,?,Blue,?,Economy}{?,?,Green,?,Economy}{?,?,White,?,Economy}
{?,?,?,1970,Economy}{?,?,?,1990,Economy}

G after removing less general hypothesis : {Japan,?,?,?,Economy}{?,?,blue,?,?}
{?,?,blue,?,?} – This is consistant with S so keep as it is..

G4 = {Japan,?,?,?,Economy}{?,?,blue,?,?}

Fifth example d: {Japan,Honda,White,1980,Economy} +ve
S5 = {Japan,?,?,?,Economy}

Among the two G pairs try to keep consistant one.
G5={Japan,?,?,?,Economy}

Sixth example d: {Japan, Honda, Red, 1990, Economy} -ve
S6={Japan,?,?,?,Economy}

Here my S6 is matching with d hence S6 is +ve where as d is –ve there by in-consistant so
make S6={ } and G6={}

Specific hypothesis = {Japan,?,?,?, Economy} From 2nd step till last-8Marks
General Hypothesis = {Japan,?,?,?, Economy}

5.a)Explain inductive bias through candidate elimination algorithm. (6M)

1. A Biased Hypothesis Space

 Suppose we wish to assure that the hypothesis space contains the unknown target concept.
 The obvious solution is to enrich the hypothesis space to include every possible hypothesis.



 Consider EnjoySport example in which we restricted the hypothesis space to include only
conjunctions of attribute values.

 Most specific hypothesis consistent with the first two  examples
 It incorrectly covers the third (negative) training example
 The problem is that we have biased the learner to consider only conjunctive hypotheses.
 In this case we require a more expressive hypothesis space.

2. An unbiased learner

 The obvious solution to be a unbiased learner– design  hypothesis space H to represent every
teachable concept;

 It should capable of representing every possible subset of the instances X. In general, the set of all
subsets of a set X is called the power-set of X.

 In general, number of distinct subsets is 2|X|.
 Thus, there are 296, or approximately distinct target concepts that could be defined over this

instance space and that our learner might be called upon to learn.
 Our conjunctive hypothesis space is able to represent only 973 of these-a very biased hypothesis

space indeed!
 Let us reformulate the Enjoysport learning task
 Let H’ represent every subset of instances; that is, let H’ correspond to the power set of X.
 One way to define such an H' is to allow arbitrary disjunctions, conjunctions, and negations of

our earlier hypotheses.
 For instance, the target concept "Sky = Sunny or Sky = Cloudy"  could then be described as

3. The Futility of Bias-Free Learning

 CEA generalizes observed training examples because it was biased by the implicit assumption
that the target concept could be represented by a conjunction of attribute values.

• If this assumption is correct (and the training examples are error-free), its classification of
new sample will also be correct.

• If this assumption is incorrect, however, it is certain that the CEA will mis-classify at least
some instances from X.
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The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a hypothesis space H is
identical to that of a deductive theorem prover utilizing the assertion “H contains the target concept." This
assertion is therefore called the inductive bias of the CANDIDATE ELIMINATION algorithm
characterizing inductive systems by their inductive  bias allows modeling them by their equivalent
deductive systems. This provides a way to compare inductive systems according to their policies for
generalizing beyond the observed training data.

b.Explain List-Then-Eliminate algorithm. (4M)

LIST-THEN-ELIMINATE Algorithm:

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain all hypotheses in H
and then eliminates any hypothesis found inconsistent with any training example.

1. VersionSpace c a list containing every hypothesis in H
2. For each training example, (x, c(x))

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x)
3. Output the list of hypotheses in VersionSpace

List-Then-Eliminate works in principle, so long as version space is finite.
However, since it requires exhaustive enumeration of all hypotheses in practice it is not feasible.

6. Find the maximally general hypothesis and maximally specific hypothesis for the training examples
given in the table using candidate elimination algorithm.

Size Color Shape Class/Label
Big Red Circle No

Small Red Triangle No
Small Red Circle Yes
Big Blue Circle No

Small Blue Circle Yes
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Step1: S0= {'0', '0', '0'}
G0 = {'?', '?', '?' }

Step2: Training Instance d: ('big', 'red', 'circle', 'N') -ve instance
S after removing consistent hypothesis

with d
S1={('0','0', '0')}

Consider g: ('?', '?', '?')

g after min specialization:
Replace each ? with opposite pair in –ve instance. (First ? can be either small or

big but we already have big in our –ve example so replace with Small, next ? is either red or blue
and we have red already so replace with blue and third ? can be either triangle or circle and we
have circle already so replace with triangle)

S1: {('0', '0', '0')}
G1: {('?', '?', 'triangle'), ('small', '?', '?'), ('?', 'blue', '?')}

Next Instance d: {small, red, triangle} –ve instance

S2={0,0,0}
G: {('?', '?', 'triangle'), ('small', '?', '?'), ('?', 'blue', '?')}

First two pairs are matching with my –ve instance (i.e. triangle and small) which should be
opposite so try to make each ? in the first two pairs with specific ones. {?,blue,?} is opposite to –ve
instance d so keep it as it is.

Replace each pair ? with the opposite pair in the negative instance. (In the first pair ? should be replaced
by {big,?,triangle} bcz small is there in my –ve instance and second ? can be replaced by

{?,blue,triangle}
Second pair second ? can be replaced by {small,blue,?} and third ? can be replaced by {small,?,circle}

My final G will be as below:
G[2]: {{big,?, triangle} {?,blue, triangle}{small,blue,?} {small,?,circle} ('?', 'blue', '?')

Compare G[2] with d and if it is not consistent then remove that pair.
{big,?,triangle} {small, ?, circle}  ,– consistant bcz it is –ve and my instance also negative so consider
this one.
{?,blue,triangle} and {small,blue,?} - These two are specific to {?,blue,?} so ignore it.
{?,blue,?} – This is –ve as opposite to red is blue but my instance also –ve so consistant.

My final generic hypothesis after removing less consistant ones are :
G : {{big,?,triangle}{small,?,circle}{?,blue,?}

Next Instance d: {small, red, circle} +ve instance

G after removing inconsistent hypothesis : {small,?,circle}
bcz {big,?,triangle} and {?,blue,?} are not consistant with d so ignore it.
S[3] = {small,red,circle}
G[3] = {small,?,circle}

Next Instance d: {big, blue, circle} -ve instance
S after removing inconsistent hypothesis : {small,red,circle}

G: {small,?,circle} which is negative and my d also –ve so consistant so keep as it is.
G[4] : {small,?,circle}



Next Instance d: {small, blue, circle} +ve instance
G after removing inconsistent hypothesis : {small,?,circle}

S[5] = {small,?,circle}
G[5] = {small,?,circle}

7.a)List the drawbacks of Find-S algorithm. Explain candidate elimination algorithm in detail. (5M)

Drawbacks of Find-S : (2Marks)
 Has the learner converged to the correct target concept?
 Why prefer the most specific hypothesis?
 Are the training examples consistent?
 What if there are several maximally specific consistent hypotheses?

Candidate Elimination Algorithm: (3Marks)
1. Initialize G to the set of maximally general hypotheses in H
2. Initialize S to the set of maximally specific hypotheses in H
3. For each training example d, do

a. If d is a positive example
 Remove from G any hypothesis inconsistent with d,
 For each hypothesis s in S that is not consistent with d,

• Remove s from S
• Add to S all minimal generalizations h of s such that h is consistent with

d, and  some member of G is more general than h
• Remove from S, hypothesis that is more general than another hypothesis

in S
b. If d is a negative example

 Remove from S any hypothesis inconsistent with d
 For each hypothesis g in G that is not consistent with d

• Remove g from G
• Add to G all minimal specializations h of g such that h is consistent with

d, and  some member of S is more specific than h
• Remove from G any hypothesis that is less general than another in G

b.What do you mean by hypothesis space, instance space and version space? (5M)

Definition: A hypothesis h is consistent with a set of training examples D if and only if
h(x) = c(x) for each example (x, c(x)) in D.

Consistent (h, D) = (for all <x, c(x)> € D) h(x) = c(x))

Note difference between definitions of consistent and satisfies
• an example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or

negative example of the target concept.
• an example x is said to consistent with hypothesis h iff h(x) = c(x)

Version Space: The version space, denoted VSH,D with respect to hypothesis space H and training
examples D, is the subset of hypotheses from H consistent with the  training examples in D

VSH,D ={h € H | Consistent(h, D)}


