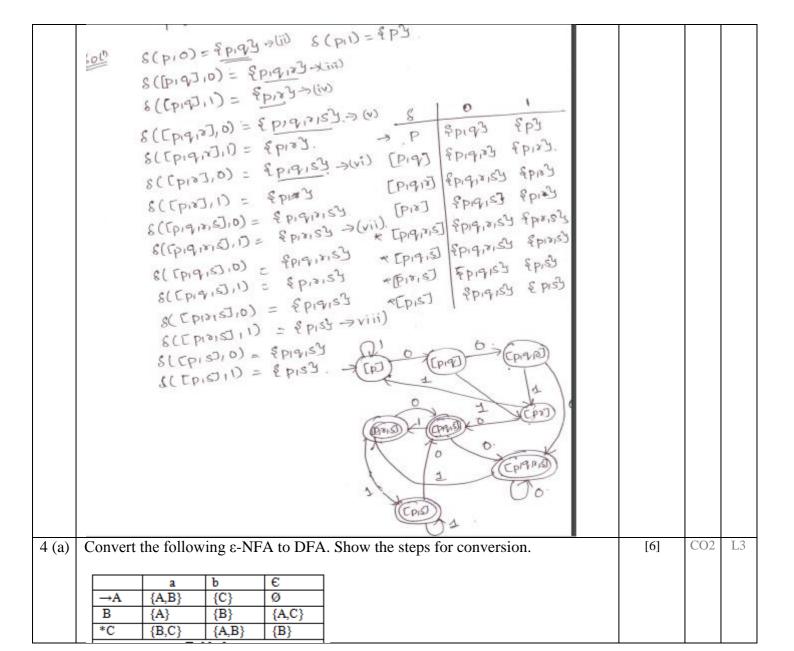
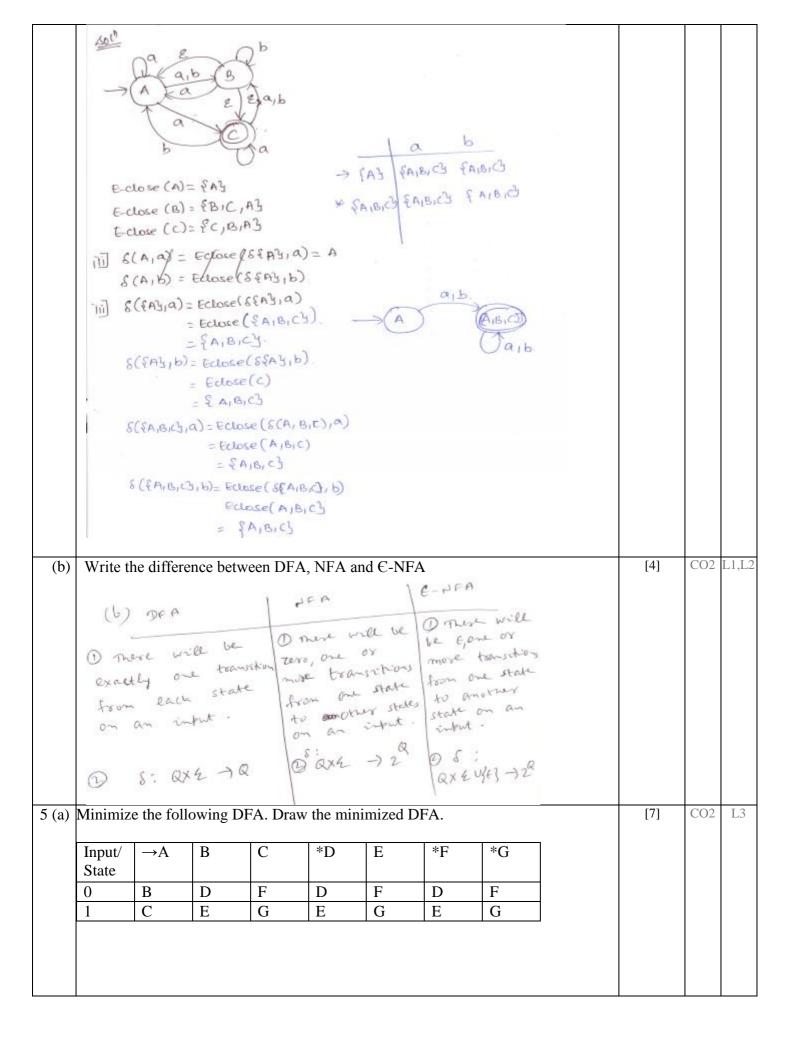
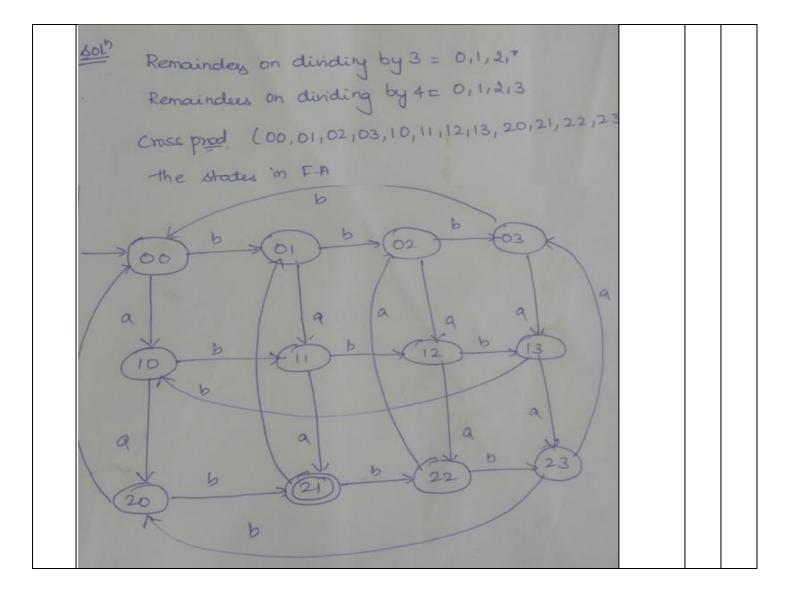
USN					


Internal Assessment Test 1 Solution – September 2019


Sub	Automata The			sment Test I S	Oluti	•	17CS54/15	Brong	h: CSE	7	
		-		34 34 1	50		CS54		II. CSL		25
Date:	6/9/19 Duration: 90 min's Max Marks: 50 Sem/Sec: V/A,B,C Answer any FIVE FULL Questions							MARKS			
Sub: Date:	6/9/19 What is Fin A fri model contain transit A FA M = 1	ite Automata of an s a f cons be a a a a b a a a a a a a a	90 min's sever any FI of Explain to tomata abstract in the treen to the final of th	he working print a mathemathemathemathemathemathemathemathe	ions incip nem tate les.	notical hich	CS54 V/A		MARKS [4]	CO	RBT L1,L2
	Working Basic	DFA THA THA Pring Block do	3 types	of FA							

ii. $L = \{ w \mid w \text{ is of even length and begins with '01'} \}$ iii. The set of all strings NOT containing the substring '110' 10'				
(b) Design DFSM for the language L={w \in \{0,1\}^*: w corresponds to the binary} \([5] \) CO1 L3	It contains 3 components.			
(b) Design DFSM for the language L={w \in \{0,1\}^*: w corresponds to the binary} \([5] \) CO1 L3	@ Imput take: It is frimite in length.			
the second control of the maximum left to what the most state at time k moves the ment towards the maximum of RIV (b) Design a DFA to accept the following languages over $\Sigma = \{0,1\}$ i. $L = \{w \mid w \text{ is of even length and begins with '01'}\}$ (6) COI L3 ii. The set of all strings NOT containing the substring '110' (Non the second control of the substring '110') (Non the s	i divided into different cells.			
The set of all strings NOT containing the substring '110' (b) Design DFSM for the language $L=\{w \in \{0,1\}^*: w \text{ corresponds to the binary} [5]$	Each cell can hold one input at a			
The scans the infect from left to right. It was a time k moves the next towards the next triple in the controls the next triple in the scans in the next triple in the				
The scans the infect from left to right. It was a time k moves the next towards the next triple in the controls the next triple in the scans in the next triple in the	Deli Head			
(b) Design a DFA to accept the following languages over $\Sigma = \{0,1\}$ i. $L = \{w \mid w \text{ is of even length and begins with '01'}\}$ ii. The set of all strings NOT containing the substring '110' (a) Design DFSM for the language $L = \{w \in \{0,1\}^* : w \text{ corresponds to the binary} [5]$	My white from left to right.			
(b) Design a DFA to accept the following languages over $\Sigma = \{0,1\}$ i. $L = \{w \mid w \text{ is of even length and begins with '01'}\}$ ii. The set of all strings NOT containing the substring '110' (Non 4) 2 (a) Design DFSM for the language $L = \{w \in \{0,1\}^* : w \text{ corresponds to the binary}\}$	- but at a time "			
(b) Design a DFA to accept the following languages over $\mathcal{E} = \{0,1\}$ i. $L = \{w \mid w \text{ is of even length and begins with '01'}\}$ ii. The set of all strings NOT containing the substring '110' (Non-4) 2 (a) Design DFSM for the language $L = \{w \in \{0,1\}^* : w \text{ corresponds to the binary}\}$ [6] CO1 L3	It reads one imple mext right ilp.			
(b) Design a DFA to accept the following languages over $\Sigma = \{0,1\}$ i. $L = \{ w \mid w \text{ is of even length and begins with '01' } \}$ ii. The set of all strings NOT containing the substring '110' 2 (a) Design DFSM for the language $L = \{ w \in \{0,1\}^* : w \text{ corresponds to the binary} \}$ [6] CO1 L3				
(b) Design a DFA to accept the following languages over Σ = {0,1} i. L = {w w is of even length and begins with '01' } ii. The set of all strings NOT containing the substring '110' 2 (a) Design DFSM for the language L={w ∈ {0,1}* : w corresponds to the binary [5] CO1 L3	@ Finite control			
(b) Design a DFA to accept the following languages over Σ = {0,1} i. L = {w w is of even length and begins with '01' } ii. The set of all strings NOT containing the substring '110' 2 (a) Design DFSM for the language L={w ∈ {0,1}* : w corresponds to the binary [5] CO1 L3	att controls the movement of RIW			
(b) Design a DFA to accept the following languages over $\Sigma = \{0,1\}$ i. $L = \{ w \mid w \text{ is of even length and begins with '01' } \}$ ii. The set of all strings NOT containing the substring '110' 10'				
ii. The set of all strings NOT containing the substring '110' 2 (a) Design DFSM for the language L={w \(\cappa \) \(\		[6]	CO1	L3
ii. The set of all strings NOT containing the substring '110' (Non f 2 (a) Design DFSM for the language L={w \in {0,1}*: w corresponds to the binary [5] CO1 L3				
ii. The set of all strings NOT containing the substring '110' (Non f 2 (a) Design DFSM for the language L={w \in {0,1}*: w corresponds to the binary [5] CO1 L3				
11. The set of all strings NOT containing the substring 110 $^{\circ}$ $^{\circ$	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$			
2 (a) Design DFSM for the language L={ $w \in \{0,1\}^*$: w corresponds to the binary [5] CO1 L3	ii. The set of all strings NOT containing the substring '110'			
	2 (a) Design DESM for the language $I = \{w \in \{0,1\} * : w \text{ corresponds to the binary}\}$	[5]	CO1	1.3
	encoding, without leading 0's of natural numbers that are evenly divisible by 5}	[2]	201	נע

are evenly all 1. (a) 1 (a)			
(b) Define the following terms with examples. (i) Alphabet (ii) Concatenation (iii) Languages (iv) Powers of alphabet (v) String Q.1. (a) (i) Alphabet: An alphabet is a finite mon-empty set of symbols. It is denoted by &. Ex. & = {0,1} & & {a,b,c} (ii) Concatenation Criven the strings is and v, concatenation of strings is and v, written as is.v, of strings is and v, written as is.v, of strings is and v, written as is.v, is the sequence obtained by alphabet is to v. Ex. & = good v = morning (iii) Languages A language over an alphabet & is a set of strings over &. L & & L &	[5]	CO1 L1,1	L2


L3
1.0
L3

There O I A B C B D E C F G X D D E E F G * F D E * G F G I Epiciel [Difig] A equivalence [A] [B] [Ciel [Difi] [G] 3 equivalence [A] [B] [Ciel [Difi] [G] 4 equivalence [A] [B] [Ciel [Difi] [G] A equivalence [A] [B] [Ciel [Difi] [G]			
	[2]	CO2 I	1.1.0
(b) Explain the term 'equivalence state' and 'distinguishable state'. 2 (b) Distinguishable & Indistinguishable state Two states b & 9 are distinguishable if there is at least one strong w such that one of \$(p, w) and \$(9, w) is accepting & the other is not accepting. Two states p & 9 are agrivalent or indistinguishable if fire all input or indistinguishable if fire all input strings w, \$(p, w) is an accepting state state iff \$(9, w) is an accepting state	[3]	CO2 L	1,L/2
6(a) Design a Mealy Machine to find addition of two binary coded natural numbers which will give sum as output. If the input string is 1101 and 10 01 , show the output string.	[5]	CO2	L3

	1101 90 11 391 00 900 10 901 11 1001 100			
(b)	Design a Moore machine which will give output as 'A' on every occurrence of the substring '101', output as 'B' on every occurrence of the substring '110', otherwise 'C'.	[5]	CO2	L3
7(a)	Prove by induction that "If there exist an E-NFA which accepts a language L, then there exist an equivalent DFA which accepts same language L" 9. The over If there exists an E-NFA which accepts a language L" accepts a language L, then there exists an equivalent DFA which exis	[5]	CO2	L2
	Design a DFA to accept the following language over $\Sigma = \{a, b\}$ for L={W N _a (W) mod 3=2 and N _b (W) mod 4=1}	[5]	CO1	L3

