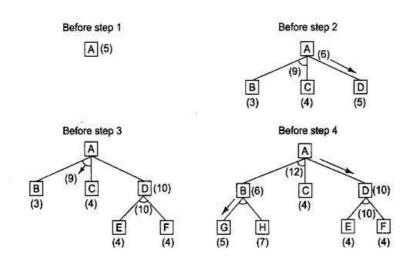

USN										
-----	--	--	--	--	--	--	--	--	--	--


Internal Assessment Test 1 – Sept. 2019

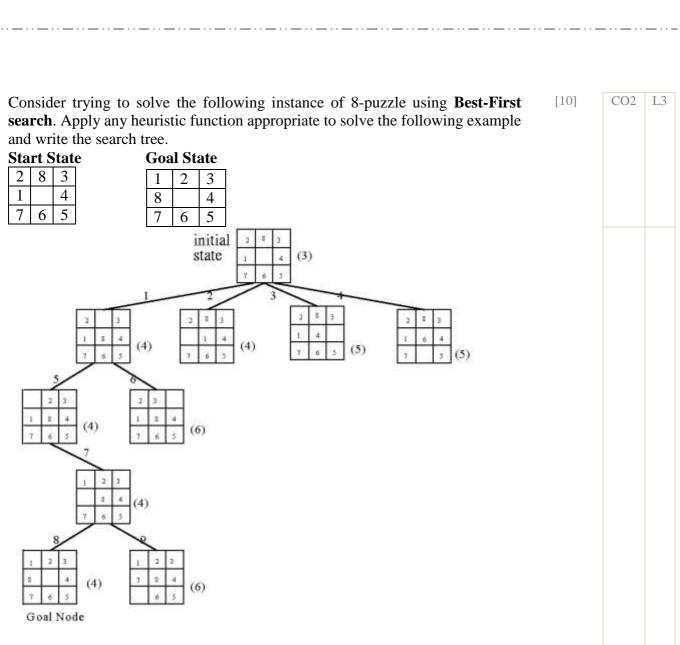
Sub:	ARTIFICIAL	INTELLIGEN	CE			Sub Code:	17CS562	Branch:	OPEN (ISE V)		TIVE
Date:	09/09/2019	Duration:	90 min's	Max Marks:	50	Sem / Sec:		V		OE	E
				five full question	<u>s</u>			Ν	IARKS	CO	RBT
1 ()	.			<u>ART -1</u>							1.2
	-	-		aracteristics w	hich	must be	analyzed be	efore	[10]	CO1	L2
	deciding on a				1	11 0 1	• 1•				
Ans				ch must be ana	lyze	d before de	ciding on a				
		heuristic se		able into a set	. f :	dan an dan t					
		blems?	decompos	able into a set	01 111	dependent	smaller or ea	ister			
	-		ten he iano	red or at least	undo	ne if they r	rove unwise	.2			
				predictable?	unuo	ne n they p					
		-		blem obvious	with	out comnar	ison to all of	her			
		ssible soluti	-	orein obvious	vv Itili	outcompar					
	1			tate or a path t	o sta	te?					
				ledge absolute			olve the				
				important onl							
	-		-	lem require in	-			uter			
		d a person?	1	1			1				
	PS: Elaborate	on these ch	naracteristic	cs.							
2 (a)	Explain the co	omponents a	and categor	ies of product	ion s	ystem. List	the require	ment [4+4+2]	CO1	L1
	of good contro	ol strategies	•								
Ans:											
	A production system consists of:										
	• A :	set of rules									
	One or more knowledge/databases that contain the appropriate										
	information.										
		control strat	0.								
		rule applier.									
	Types of prod	-									
	• Mo	onotonic Pro	oduction sy	stem:							
		on-monoton	•	•							
		•	-	roduction syst	tem						
		ommutative	1	~							
	Requirement	-						_			
	-	d control str	ategy must	cause motion	i.e c	hange of sta	ates towards	goal			
	state.			1							
	• A good	d control str	ategy must	be systematic.	•						
3 (a)	Explain how A	AND-OR gr	aphs are us	ed in problem	redu	ction with s	suitable exar	nple.	[10]	CO2	L2
Ans	Problem r	eduction:									
~			nting the so	olution of prob	lems	that can be	solved by				
		-	-	of smaller pro			•	then			
	solved			pro-		., 01					
	501,04	-									

• Some problems are best represented as achieving sub goals, some of which achieved simultaneously and independently (AND)

- Algorithm similar to Best First Search but with the ability to handle AND arcs.
- Must examine several nodes simultaneously when choosing the next move.
- The choice of the next node to expand depends not only n f' value of the node but also on whether that node is part of the current best path form the initial mode.

(Optional algorithm)

Algorithm: Problem Reduction


- 1. Initialize the graph to the starting node.
- 2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:
 - (a) Traverse the graph, starting at the initial node and following the current best path, and ac the set of nodes that are on that path and have not yet been expanded or labeled as solve
 (b) Pick one of these unexpanded nodes and expand it. If there are no successors, assign *FU*, the value of this node. Otherwise, add its successors to the graph and for each of them co (use only h' and ignore g, for reasons we discuss below). If of any node is 0, mark that
 - SOLVED.
 (c) Change the f' estimate of the newly expanded node to reflect the new information provides successors. Propagate this change backward through the graph. If any node contains a star whose descendants are all solved, label the node itself as SOLVED. At each node that while going up the graph, decide which of its successor arcs is the most promising and 1 part of the current best path. This may cause the current best path to change. This proparevised cost estimates back up the tree was not necessary in the best-first search algorithm only unexpanded nodes were examined. But now expanded nodes must be reexamined s best current path can be selected. Thus it is important that their f' values be the best available.

4 (a)	Define AI. What are the different levels of modeling in AI? List the task domains of AI.	[2+3+5]	CO1	L1
Ans	 AI is the study of technique for solving exponentially hard problems in polynomial time by exploiting knowledge about the problem domain. AI (artificial intelligence) is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions) and self-correction. Artificial Intelligence (or AI) is "the study and design of intelligent agents" Task Domains: Perception, Natural Language, Reasoning, Games, Mathematics, Engineering, Scientific Analysis, etc (PS: Elaborate on few of the above task domains) 			
5 ()		[(000	
5 (a)	Write and explain steepest hill climbing search algorithm. Comment on its drawbacks and how to overcome these drawbacks	[6+2+2]	CO2	L2
Ans	 Algorithm for Steepest Hill Climbing: Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the initial state as current state. Loop until a solution is found or until a complete iteration produces no changes to current state. Let SUCC be a state such that any possible successor of the current state will be better than SUCC. For each operator that applies to the current state do: Apply the operator and generate a new state. Evaluate the new state, If it is a goal state, then return it and quit. If not compare it to SUCC. If it is better, then set SUCC to this state. Bis If SUCC is better than current state, set current state to SUCC. solution for the state to success. Drawbacks: Local Maximum/minimum Plateau Ridge 			

- a) Back track to some earlier nodes and try a different direction. This is a good way of dealing with local maxim.
- b) Make a big jump in some direction to a new area in the search. This can be done by applying two more rules or the same rule several times, before testing. This is a good strategy in dealing with plateaus and ridges.
- c) Apply two or more rules before doing the test.

6

Ans

Heuristic : h(n) = depth of node(n)+ misplaced tiles(n)

7 Apply appropriate heuristic to solve the following block word problem using **steepest ascent hill climbing** method, show the steps using search tree.

CO2 L3

CO1

L3

Start State					
Α					
В		D			
С		E			

Ans

8. You are given two jugs, a 5-gallon one and a 3-gallon one, a pump which has unlimited water which you can use to fill the jug, and the ground on which water may be poured. Neither jug has any measuring markings on it. How can you get exactly 4 gallons of water in the 5-gallon jug? Write production rules and give state transitions for any one possible solution for the above problem.

Ans

	e possible solution for the	e prooreini
1. (x,y) If x<5	(5 , y)	Fill the 5 gallon jug
2. (x,y) If y<3	(x ,3)	Fill the 3 gallon jug
3. (x,y) If x>0	(0 ,y)	Empty the 5 gallon jug on the ground
4. (x,y) If y>0	(x ,0)	Empty the 3 gallon jug on the ground
5.(x,y) If x+y>=5 and y>0	(5,y-(5-x))	Pour water from 3-gallon jug in to the 5 gallon jug until the 5 gallon jug is full
6 .(x,y) If x+y>=3 and x>0	(x-(3-y),3)	Pour water from 5-gallon jug in to the 3 gallon jug until the 3 gallon jug is full
7. (x,y) If x+y<=3 and x>0	(0 ,x+y)	Pour all water from 5-gallon jug in to the 3 gallon jug
8. (x,y) If x+y<=5 and y>0	(x+y,0)	Pour all water from 3-gallon jug in to the 5 gallon jug

[6+4]

9. (x,y) If x>0	(x-d , y)	Pour some water out of 5 gallon jug
10. (x,y) If y>0	(x , y - d)	Pour some water out of 4 gallon jug

5-Gallon jug	3-Gallon jug	Rule Applied
0	0	1
5	0	6
2	3	4
2	0	7
0	2	1
5	2	7
4	3	Final state