
 

 

 
Solution for Internal Assessment Test 1 – September 2019 

Sub: Data Structures & Algorithms Sub Code: 18CS32 Branch: CSE 

Date: 09/09/2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: 3/A,B &C OBE 

               Answer any FIVE FULL Questions                                                                MARKS 
 

 
1 (a) Differentiate structure and union with examples. 

 

Solution: 
 

S.no Structure Union 

 
1 

Structure allocates 

storage space for all its 

members separately. 

Union allocates one common storage space for all its 

members. Union finds that which of its member needs 

high storage space over other members and allocates 

that much space 

2 
Structure occupies 

larger memory space. 
Union occupies lower memory space over structure. 

3 
We can access all 

members of structure at a 

time. 

We can access only one member of union at a time. 

 

 
4 

Structure 

example: struct 

student 

{ 

int mark; 

double 

average; 

}; 

Union 

example

: union 

student 

{ 

int 

mark; 

double 

average; 

}; 

 

 
5 

For above structure, 

memory allocation will 

be like below. int mark – 

2B 

double average – 8B 

Total memory allocation = 

2+8 

= 10 Bytes 

 
For above union, only 8 bytes of memory will be 

allocated since double data type will occupy maximum 

space of memory over other data types. 

Total memory allocation = 8 Bytes 

 

 

 

 

[04] 

   (b) Explain dynamic memory allocation & de-allocation functions in C with syntax & example. 

 

Solution: 
 

 

The process of allocating memory during program execution is called dynamic memory 

allocation. 

[06] 



 

 

DIFFERENCE BETWEEN STATIC MEMORY ALLOCATION AND DYNAMIC 

MEMORY ALLOCATION IN C: 

 

 
Static memory allocation Dynamic memory allocation 

 

 
In static memory allocation, memory 

is allocated while writing the C 

program. Actually, user requested 

memory will be allocated at compile 

time. 

In dynamic memory 

allocation, memory is 

allocated while executing the 

program. That means at run 

time. 

Memory size can‟t be modified while 

execution. 

Example: array 

Memory size can be modified 

while execution. 

Example: Linked list 

 

C language offers 4 dynamic memory allocation functions. They are,  

 

1. malloc() : malloc (number * sizeof(int)); 

2. calloc() : calloc (number, sizeof(int)); 

3. realloc() : realloc (pointer_name, number * sizeof(int)); 

4. free() : free (pointer_name); 

 

1. MALLOC(): 

 Is used to allocate space in memory during the execution of the program. 

 Does not initialize the memory allocated during execution. It carries garbage 

value. 

 Returns null pointer if it couldn‟t able to allocate requested amount of memory. 

 

Syntax:  ptr = (cast-type*) malloc(byte-size) 

Example: ptr = (int*) malloc(100 * sizeof(float)); 

 

2. CALLOC(): 

 calloc () function is also like malloc () function. But calloc () initializes the 

allocated memory to zero. But, malloc() doesn‟t. 

 

Syntax:  ptr = (cast-type*)calloc(n, element-size); 

Example: ptr = (float*) calloc(25, sizeof(float)); 

 

 

 



 

 

 

 

3. REALLOC(): 

 Realloc () function modifies the allocated memory size by malloc () and 

calloc ()  functions  to new size. 

 If enough space doesn‟t exist in memory of current block to extend, new 

block is allocated for the full size of reallocation, then copies the existing 

data to new block and then frees the old block. 

 

Syntax:  ptr = realloc(ptr, x); 

Example: ptr = realloc(ptr, n2 * sizeof(int)); 

 

 

4. FREE(): 

 Free () function frees the allocated memory by malloc (), calloc (), realloc () 

functions and returns the memory to the system. 

Syntax: free(ptr); 

 

DIFFERENCE BETWEEN MALLOC() AND CALLOC() FUNCTIONS IN C: 

 

 

 
malloc() calloc() 

 

It allocates only 

requested memory 

single block of It allocates multiple blocks of 

requested memory 

 

int *ptr;ptr = malloc( 20 * sizeof(int) 

); 

 

For the above, 20*4 bytes of memory 

only   allocated   in   one   block. 

Total = 80 bytes 

int *ptr;Ptr = calloc( 20, 20 * 

sizeof(int) );For the above, 20 

blocks of memory will be 

created and each contains 

20*4 bytes  of  memory. 

Total = 1600 bytes 

 

malloc () doesn‟t initializes the 

allocated memory. It contains garbage 

values 

 
calloc () initializes the 

allocated memory to zero 

 

type cast must be done since this 

function returns void pointer int 

*ptr;ptr  = (int*)malloc(sizeof(int)*20 

); 

 
Same as malloc () function 

int *ptr;ptr = (int*)calloc( 20, 

20 * sizeof(int) ); 

 

 

 

 

 



 

 

 

 

2  Write the Knuth Morris Pratt pattern matching algorithm and apply the same to search the pattern ‘abcdabcy’ 

in the text ‘abcxabcdabxabcdabcdabcy’. Demonstrate steps also. 

 

Solution: 
 

Knuth Morris Pratt Pattern Matching Algorithm: 

algorithm kunth_morris_pratt 

    input: 

        S  // array of characters (String/text to be searched) 

        W // array of characters (sub-string/pattern to find) 

    output: 

        an integer (starting position where W is found in S) 

 

         

1.         m=0 // the beginning of the current match in S 

2.         i=0  // the position of the current character in W) 

3.         T[]  //  array of integers (to track and record position) 

 

4.  while m + i < length(S) do 

4.1 if W[i] = S[m + i] then 

    if i = length(W) - 1 then 

return m 

   endif  

         i = i+1 

             4.2 else if T[i] > -1 then 

            m = m + i - T[i] 

                  i =  T[i] 

           4.3       else 

            m = m + 1 

                  i = 0 

4.4     endif 

4.5 endif 

5.   Endwhile 

6                 return the length of S  // if reached here 

 

 

[10] 



 

 

 

 

 

Applying the algorithm to search the pattern ‘abcdabcy’ in the text 

‘abcxabcdabxabcdabcdabcy’ 

                       1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W: abcdabcy  

i: 01234567       

//Mismatches on 3 so, next comparison after overlapping from 3  

 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:              abcdabcy 

i:       01234567 

 

//Mismatches on 3(first char) so, next comparison from 4  

 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:                  abcdabcy 

i:          01234567 

 

//Mismatches on 10 but next ab starts at 8 so, next comparison after overlapping from 8 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:                  abcdabcy     

i:     01234567  

 

//Mismatches on 10 so, next comparison after overlapping from 10 

 



 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:                       abcdabcy     

i:          01234567  

 

//Mismatches on 10(first char) so, next comparison from 11  

 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:                         abcdabcy     

i:            01234567  

 

//Mismatches on 18 but next ab starts at 15 so, next comparison after overlapping from 15 

 

                      1                    2     

m: 01234567890123456789012 

S: abcxabcdabxabcdabcdabcy 

W:                                  abcdabcy     

i:                     01234567  

 

//All characters of pattern match starting from 15 – Found 

 

 

3 (a)  Demonstrate bubble sort with an array of 5 integers. 
 

 

Solution: 
 

Algorithm for Bubble sort: Bubble_Sort( A[], N) 

Step1 : Repeat for p = 1 to N-1 
Begin 

Step2 : Repeat for j = 1 to N-p 
Begin 

Step3 : if (A[j] < A[j-1]) 
Swap ( A[j], A[j-1]); 

End for  

End for 

Exit 

 

[05] 



 

 

 

Example: 

First Pass: 

( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps 

since 5 > 1. 

( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4 

( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2 

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), 

algorithm does not swap them. 

 

Second Pass: 

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ) 

( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 ) 

Now, the array is already sorted, but our algorithm does not know if it is completed. The 

algorithm needs one whole pass without any swap to know it is sorted. 

 

Third Pass: 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

 

 

   (b) Write a fast transpose algorithm or function to transpose a sparse matrix using triplets. 
 

Solution: 
 

Fast Transpose Algorithm to transpose the given sparse matrix: 

 

1. Input Matrix is A[6][5] 

 

2. For r= 1 to 6 

  2.1 For c = r+1 to 5     // for replacing values of A[r][c] with A[c][r] 

     temp=A[r][c] 

   A[r][c]=A[c][r] 

   A[c][r]=temp 

   2.2 Next c 

3. Next r 

In given sparse matrix, Total rows = 6, Total columns = 5 & Total non-zero elements = 8 

[05] 



 

 

 

 

Converting in triplets: 

 

First/header row of triplets will contain 6, 5 and 8 and rest of the triplets will have 

corresponding row number, column number of non-zero element and non-zero element 

itself 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now Transposed sparse matrix: in 5 rows and 6 columns 

 

 

 

 

 

 

 

 

 

Again transposing for triplets 

 

 

 

 

 

 

 

 

 

 

 
 

4 (a) Define recursion. What are the properties of recursive procedure? 

 

Solution: 
 

Recursion is deceptively simple in statement but exceptionally complicated in 

implementation. Recursive procedures work fine in many problems. Many programmers 

prefer recursion though simpler alternatives are available. It is because recursion is 

elegant to use though it is costly in terms of time and space. 

 

 

[05] 

6    5     

8 

0    0   

10 

0    3   

25 

1    1   

23 

1    4   

45 

2    4   

32 

3    0   

42 

3    3   

31 

5    2   

30 

10    0    0    42    0     

0 

0      23  0     0      0     

0 

0      0     0     0      0    

30 

25    0    0     31    0     

0 

0      45  32    0      0    

0 

5    6     

8 

0    0   

10 

0    3   

42 

1    1   

23 

2    5   

30 

3    0   

25 

3    3   

31 

4    1   

45 

4    2   

32 



 

 
 

A recursive function can go infinite like a loop. To avoid infinite running of recursive 

function, there are two properties that a recursive function must have − 

 Base case − There must be at least one base criteria or condition, such that, when 

this condition is met the function stops calling itself recursively. 

 General case − The recursive calls should progress in such a way that each time a 

recursive call is made it comes closer to the base criteria. 

 

 

   (b)  Write a C program to solve the “Tower of Hanoi” problem using recursion. [05] 

 Solution: 

 

 int main () 

{ 

int   n; 

printf("Enter number of discs: "); 

scanf("%d",&n); 

towers_of_hanoi (n, "Tower 1", "Tower 2", "Tower 3");  

return 0; 

} 

void towers_of_hanoi (int n, char *a, char *b, char *c) 

{ 

if (n == 1) 

  {  

   ++cnt; 

  printf ("\n%5d: Move disk 1 from %s to %s", cnt, a, c);  

return; 

 

} 

else 

{ 

   towers_of_hanoi (n-1, a, c, b); ++cnt; 

printf ("\n%5d: Move disk %d from %s to %s", cnt, n, a, c); 

 towers_of_hanoi (n-1, b, a, c); 

 return; 

} 

 } 

 

 

Output of the program: 

Enter the number of discs: 3 

1: Move disk 1 from tower 1 to tower 3. 

2: Move disk  2  from tower  1  to tower 2. 

3: Move disk  1  from tower  3  to tower 2. 

4: Move disk 3 from tower 1 to tower 3. 

5: Move disk 1 from tower 2 to tower 1. 

6: Move disk  2  from tower  2  to tower 3. 

7: Move disk  1  from tower  1  to tower 3. 



 

 

 

 
5   Define stack. Write a C program demonstrating the various stack operations, including cases for overflow and 

underflow of stacks. 

 

Solution: 

 

A stack is a list of elements in which an element may be inserted or deleted only at one 

end, called the top of the stack. Stacks are sometimes known as LIFO (last in, first out) 

lists. As the items can be added or removed only from the top i.e. the last item to be added 

to a stack is the first item to be removed. 

The two basic operations associated with stacks are: 

• Push: is the term used to insert an element into a stack. 

• Pop: is the term used to delete an element from a stack. 

. 

All insertions and deletions take place at the same end, so the last element added to the 

stack will be the first element removed from the stack. When a stack is created, the stack 

base remains fixed while the stack top changes as elements are added and removed. The 

most accessible element is the top and the least accessible element is the bottom of the 

stack. 

 

#include<stdio.h> 

#include<process.h> 

#include<stdlib.h>  

#define MAX 5 //Maximum number of elements that can be stored  

int top=-1,stack[MAX]; 

void push(); 

void pop(); 

void display(); 

  

void main() 

{ 

 int ch;  

 while(1) //infinite loop, will end when choice will be 4 

 { 

  printf("\n*** Stack Menu ***"); 

  printf("\n\n1.Push\n2.Pop\n3.Display\n4.Exit"); 

  printf("\n\nEnter your choice(1-4):"); 

  scanf("%d",&ch);   

  switch(ch) 

  { 

   case 1: push(); 

[10] 



 

      

                                                           break; 

   case 2: pop(); 

     break; 

   case 3: display(); 

     break; 

   case 4: exit(0); 

    

   default: printf("\nWrong Choice!!"); 

  } 

 } 

} 

  

void push() 

{ 

 int val; 

  

 if(top==MAX-1) 

 { 

  printf("\nStack is full!!"); 

 } 

 else 

 { 

  printf("\nEnter element to push:"); 

  scanf("%d",&val); 

  top=top+1; 

  stack[top]=val; 

 } 

} 

 void pop() 

{ 

 if(top==-1) 

 { 

  printf("\nStack is empty!!"); 

 } 



 

  

 

             else 

 { 

  printf("\nDeleted element is %d",stack[top]); 

  top=top-1; 

 } 

} 

  

void display() 

{ 

 int i; 

  

 if(top==-1) 

 { 

  printf("\nStack is empty!!"); 

 } 

 else 

 { 

  printf("\nStack is...\n"); 

  for(i=top;i>=0;--i) 

   printf("%d\n",stack[i]); 

 } 

} 

 

Output 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):1 

Enter element to push:3 

 

 



 

 

 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):1 

Enter element to push:6 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):3 

Stack is… 

6 

3 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):2 

Deleted element is 6 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):3 

Stack is… 

3 

 

 



 

 

 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):2 

Deleted element is 3 

*** Stack Menu *** 

1.Push 

2.Pop 

3.Display 

4.Exit 

Enter your choice(1-4):2 

Stack is empty!! 

 

 

6 (a) Write a function to evaluate postfix expression 

Solution: 

 

 #include<stdio.h> 

 #include<ctype.h> 

 # define MAXSTACK 100         

 # define POSTFIXSIZE  

 int stack[MAXSTACK]; 

 int top = -1    

void push(int item) 

 { 

  if(top >= MAXSTACK -1) 

  { 

   printf("stack over flow"); 

   return; 

  } 

  else 

  { 

   top = top + 1 ; 

[05] 



 

 

 

   stack[top]= item; 

  } 

 } 

  

 int pop() 

 { 

  int item; 

  if(top <0) 

  { 

  printf("stack under flow"); 

  } 

  else 

  { 

   item = stack[top]; 

   top = top - 1; 

   return item; 

  } 

 } 

  

 void EvalPostfix(char postfix[]) 

 { 

 

 int i ; 

 char ch; 

 int val; 

 int A, B ; 

 

 /* evaluate postfix expression */ 

 for (i = 0 ; postfix[i] != ')'; i++) 

 { 

  ch = postfix[i]; 

  if (isdigit(ch)) 

  { 



 

 

 

    

   push(ch - '0'); 

  } 

  else if (ch == '+' || ch == '-' || ch == '*' || ch == '/') 

  {    

   A = pop(); 

   B = pop(); 

 

   switch (ch) /* ch is an operator */ 

   { 

    case '*': 

    val = B * A; 

    break; 

    case '/': 

    val = B / A; 

    break; 

    case '+': 

    val = B + A; 

    break; 

    case '-': 

    val = B - A; 

    break; 

   } 

    push(val); 

  } 

 } 

 printf( " \n Result of expression evaluation : %d \n", pop()) ; 

 } 

 int main() 

 { 

 int i ; 

 char postfix[POSTFIXSIZE]; 

 



 

 

 for (i = 0 ; i <= POSTFIXSIZE - 1 ; i++) 

 { 

  scanf("%c", &postfix[i]);    

 } 

  EvalPostfix(postfix);  

 return 0; 

 } 

Output: 

Enter postfix expression : 456*+ 

Result of expression evaluation : 34 

 

 

   (b) Explain with example insertion and deletion at a valid position in an array. 

 

Solution: 

 

 To insert element in array 

1. Input size and elements in array. Store it in some variable say size and arr. 

1. 2. Input new element and position to insert in array. Store it in some variable 

say num and pos. 

 

3.To insert new element in array, shift elements from the given insert position to one position 

right. Hence, run a loop in descending order from size to pos to insert. The loop structure should 

look like for(i=size; i>=pos; i--). 

Inside the loop copy previous element to current element by arr[i] = arr[i - 1];. 

1.  

 

[05] 

https://codeforwin.org/2015/07/c-program-to-read-and-print-elements-in-array.html


 

 

4.Finally, after performing shift operation. Copy the new element at its specified position  

i.e. arr[pos-1]=num;. 

 

 

 

To delete element from an array 

1. 1. Move to the specified location which you want to remove in given array. 

2. 2. Copy the next element to the current element of array. Which is you need to 

perform array[i] = array[i + 1]. 

3. 3. Repeat above steps till last element of array. 

4. 4. Finally decrement the size of array by one. 

 

 

 

 

7 (a) Consider two polynomials, 

A(x) = 4x15 + 3x4 + 5 and B(x) = x4 + 10x2 + 1 

Show diagrammatically how these two polynomials can be stored in a 1- D array. Also give 

its C 

representation for initialization. 

Solution: 

 

[05] 



 

 

Diagrammatic representation of given polynomial in one-dimensional array: 

Array representation assumes that the exponents of the given expression are arranged from 0 

to the highest value (degree), which is represented by the index/subscript (element number of 

the array) of the array beginning with 0.  The coefficients of the respective exponent are 

placed at an appropriate index in the array.  

 

A(x) = 4x15 + 3x4 + 5 

 

 
Exponents/Indices       0   1    2    3   4    5    6    7    8    9     10  11 12   13  14  15  

 

Now C representation: 

int Ax [16] = { 5,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4}; 

B(x) = x4 + 10x2 + 1 

 
Exponents/Indices                                         0     1       2      3    4    

 

And C representation: 

int Bx [5] = { 1,0,10,0,1}; 

 

 
   (b)  Write an algorithm for Ackermann’s function. Evaluate A(1,2) using Ackermann’s function. 

 

Solution: 

 

Ackerman’s function is a classic example of recursive function. It is well defined total 

computable function but not primitive recursive. Earlier before 1995 the concept was that 

all computable functions are primitive recursive also.  

Ackerman’s function grows exponentially: 

 

Ackerman’s A(x,y) function is defined for integer x and y: 

 

  y+1   if x = 0 

a(x,y)=   a(x-1,1)   if y = 0 

  a(x-1, a(x,y-1))  otherwise 

 
 

We can implement in C function: 

 

int ackermann(int x, int y) 

{ 

 if(x==0)  return y+1; 

 if(y==0) return ackermann(x-1,1); 

 return ackermann(x-1,ackermann(x,y-1)); 

} 

If x=1 and y = 2, the result will be 4 and total function calls in recursion will be 10 times. 

[05] 



 

 
 

 

 

8   Convert the infix expression ((a/(b-c+d))*( e-a)*c) to postfix expression and evaluate that 

postfix expression for given data  a=6, b=3, c=1, d=2, e=4 (using stack representation). 

 

Solution: 

 

Convert the infix expression ((a/(b-c+d))*( e-a)*c) to postfix expression: 

 

Stack Top of the 

stack 

Symbo

l 

Postfix Operation 

# # (  Push into stack. 

# ( ( (  Push into stack. 

# ( ( ( a a Place it in postfix. 

# ( ( ( / a / has higher precedence 

push into stack. 

# ( ( / / ( a Push into stack. 

# ( ( / ( ( b a b Place it in postfix. 

# ( ( / ( ( -  - has higher precedence 

push into stack. 

# ( ( / ( - - c a b c Place it in postfix. 

# ( ( / ( - - + a b c -  - has equal precedence to + 

pop from stack and place it 

in postfix, push + into stack. 

# ( ( / (  + + d a b c - d Place it in postfix. 

# ( ( / (  + + ) a b c – d + Pop until we get matching 

‘(‘ and decrement top. 

# ( ( / / ) a b c – d + / Pop until we get matching 

‘(‘ and decrement top. 

# ( ( * a b c – d + / * has higher precedence 

push into stack. 

# ( * * ( a b c – d + / Push into stack. 

# ( * ( ( e a b c – d + / e Place it in postfix. 

# ( * ( ( - a b c – d + / e - has higher precedence 

push into stack. 

# ( * ( - - a a b c – d + / e a Place it in postfix. 

# ( * ( - - ) a b c – d + / e a - Pop until we get matching 

‘(‘ and decrement top. 

# ( * * * a b c – d + / e a - * * has equal precedence to * 

pop from stack and place it 

in postfix, push + into stack. 

# ( * * c a b c – d + / e a - * c Place it in postfix. 

# ( * * ) a b c – d + / e a - * c* Pop until we get matching 

‘(‘ and decrement top. 
 

[10] 

 

 

 

Postfix Expression: a b c – d + / e a - * c* 



 

 

 

Evaluation of postfix expression: a b c – d + / e a - * c* = 631-2+/46-*1* 

 

Symbol OP2 OP1 Stack Contents Operation 

6   6 Push into stack. 

3   6 3 Push into stack. 

1   6 3 1 Push into stack. 

- 1 3 6 2 3-1=2 ,push into 

stack. 

2   6 2 2 Push into stack. 

+ 2 2 6 4 2+2=4 , push into 

stack. 

/ 4 6 1 6/4=1 , push into 

stack. 

4   1 4 Push into stack. 

6   1 4 6 Push into stack. 

- 6 4 1 -2 4 – 6 = -2, push 

into stack. 

* -2 1 -2 1*-2= -2, push into 

stack. 

1   -2 1 Push into stack. 

* 1 -2 -2 -2 * 1 = -2, push 

into stack. 

 

Result of postfix expression: a b c – d + / e a - * c* = 631-2+/46-*1*= -2. 

 


	Output of the program:

