

Scheme Of Evaluation Internal Assessment Test 1 – Sept.2019

Sub:		Analog and Digital Electronics					Code:	18CS33	
Date:	09/09/2019	Duration:	90mins	Max Marks:	50	Sem:	Ш	Branch:	ISE

Note: Answer Any Five Questions

Que	Question Description #		Marks Distribution		Max Marks
	a)	Find the minimum SOP and the minimum POS for each function:			
		$F(a, b, c, d) = \Pi M (0, 1, 6, 8, 11, 12)$	2.5M x		
		 Using K-Map for SOP form, calculate minimum SOP 	2	5M	
1	Using K-Map for POS form, calculate minimum POS			10 M	
	b)	F(a, b, c, d) = Σ m (1, 3, 4, 11) + Σ d (2, 7, 8, 12, 14, 15)			
		 Using K-Map for SOP form, calculate minimum SOP 	2.5M x 2	5M	
		 Using K-Map for POS form, calculate minimum POS 			
		Find a minimum SOP solution using Quine McCluskey method			
		$F(a, b, c, d) = \Sigma m (2, 3, 4, 7, 9, 11, 12, 13, 14) + \Sigma d$	4M		
	2	(1, 10, 15)	2M	10M	10 M
	-	 Grouping minterms based on index and Identifying prime implicants 	2M	101/1	10.11
		Preparing Prime Implicant chart	2M		
		 Identifying Essential PI Obtaining a minimum solution 			
		Find all minimum SOP solutions for the function using	4M		
	3	Petrick's method	2M	10M	10 M
		F(a, b, c, d) = Σ m (0, 3, 4, 5, 7, 9, 11, 13) • Grouping minterms based on index and	2M		

		Identifying PI and preparing PI chart Eliminating Essential PI and its corresponding minterms and obtaining logic function P in terms of rows P1, P2, etc in PI chart Solving for P using Boolean theorems Identifying all possible minimum solutions for given function from solution of P.	2M		
	a)	Using the method of map-entered variables, use 4-variable maps to find a minimum SOP expression for: $F(A, B, C, D, E) = \Sigma m (0, 4, 6, 13, 14) + \Sigma d (2, 9) + E(m_1 + m_{12})$	2M		
		 K-Map for given function K-Map for E=0 Obtain MS0 K-Map for E=1 Obtain MS1 Obtain final minimum solution 	2M 1M	5M	
4	b)	Z(A, B, C, D, E, F, G) = Σ m (2, 5, 6, 9) + Σ d (1, 3, 4, 13, 14) + E(m ₁₁ + m ₁₂) + Fm ₁₀ + Gm ₀ • K-Map for given function • K-Map for E=0, F=0, G=0 • Obtain MS0 • K-Map for E=1 • Obtain MS1 • K-Map for F=1 • Obtain MS2 • K-Map for G=1 • Obtain MS3 • Obtain final minimum solution	1M x 5	5M	10 M
5	a)	In the circuit shown below, assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns. Initially A = B = C = 0 and D = 1; C changes to 1 at time 2 ns. Draw a timing diagram showing the glitch corresponding to the hazard. • Show timing diagrams for all inputs • Obtain timing diagrams for intermediate outputs • Obtain timing diagram for output and showing the hazard	2M x 3	6M	10 M

	b)	Identify the hazard as per the circuit given below.			
	٠,	Modify the circuit so that it is hazard-free.			
		 Identify the type of hazard Obtain the circuit expression with hazard Draw the circuit with hazard and mark the hazard in it Obtain the hazard free expression and draw the corresponding circuit diagram 	1M x 4	4M	
6	a)	Show how two 2:1 multiplexers (with no added gates) could be connected to form a 3:1 MUX. Input selection should be as follows: If AB = 00, select I ₀ If AB = 01, select I ₁ If AB = 1- (B is a don't care), select I ₂ . • Show the implementation with necessary details	2M	2M	10M
	b)	Implement AND gate and OR gate using 2:1 MUX Implement AND gate using 2:1 MUX Implement OR gate using 2:1 MUX	2M x 2	4M	

a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 Write the truth table for Binary to Gray code converter 8 and realize the same using four 8:1 multiplexers. • Binary to Gray code conversion using truth table 4M 0.5M x 8 4M 2M x 3 6M 2M x 3 6M 2M x 2 4M 10 M		c)	Using four-valued logic, find A, B, C, D, E, F, G and H from the below circuit:			
a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 10 M • Show timing diagram of V • Show timing diagrams of Z Write the truth table for Binary to Gray code converter 4M and realize the same using four 8:1 multiplexers. 2M 10M 10 M			0 B F G F G F G		4M	
What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 10 M • Show timing diagram of V • Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10M 10 M						
Description of hazards 3 types of hazards Description of each type with diagram/example Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 3 6M 2M x 3 6M 2M x 3 6M 10 M 10 M		a)	What do you mean by hazards in combinational logic?			
Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10 M 10 M			What are the different types of hazards? Explain.			
Description of each type with diagram/example Dobtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. The show timing diagram of V			Description of hazards	2M x 3	6M	
b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10M 10 M			3 types of hazards			
below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 2 4M 10 M 10 M			Description of each type with diagram/example			
Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 2 4M 4M 10 M 10 M		b)	below. Assume that the AND gate has a delay of 10			
Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. Market Show timing diagrams of Z Write the truth table for Binary to Gray code converter and the same using four 8:1 multiplexers. Market Show timing diagrams of Z	7		X - 1	2M x 2	4M	10 M
Write the truth table for Binary to Gray code converter 4M and realize the same using four 8:1 multiplexers. 2M 10M 10 M			Show timing diagram of V			
8 and realize the same using four 8:1 multiplexers. 2M 10M 10 M			Show timing diagrams of Z			
8 and realize the same using four 8:1 multiplexers. 2M 10M 10 M						
			Write the truth table for Binary to Gray code converter	4M		
Binary to Gray code conversion using truth table 4M		8	and realize the same using four 8:1 multiplexers.	2M	10M	10 M
			Binary to Gray code conversion using truth table	4M		

- Implementation table for G3, G2, G1 and G0
- Obtain all 8 inputs to be given to each 8:1 MUX for G3, G2, G1 and G0 and implementation of four 8:1 multiplexers giving the above obtained inputs

SOLUTIONS

1	Find the minimum SOP and the minimum POS for each function:
(a)	$F(a, b, c, d) = \Pi M (0, 1, 6, 8, 11, 12)$
(b)	$F(a, b, c, d) = \Sigma m (1, 3, 4, 11) + \Sigma d (2, 7, 8, 12, 14, 15)$

2	Find a minimum SOP solution using Quine McCluskey method
	$F(a, b, c, d) = \Sigma m (2, 3, 4, 7, 9, 11, 12, 13, 14) + \Sigma d (1, 10, 15)$

2 0 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1	2001 Index 1 001 Index 2 001 Index 3 001 Index 4	1 000 2 001 4 010 3 00 9 100 10 101 12 110 7 011 11 101 13 110 14 111	$\begin{array}{c} (1,3) \\ (1,3) \\ (1,9) \\ (2,10) \\ (2,10) \\ (3,11) \\ (1$	$ \begin{array}{c c} 00 - 1 \\ -001 \\ \hline -001 \\ \hline -010 \\ \hline -010 \\ \hline -010 \\ \hline -010 \\ \hline -011 \\ \hline 10 - 1 \\ \hline 1-01 \\ \hline 1-10 \\ \hline 110 - 0 \end{array} $
1,3,9,11 - 1,9,3,11 2,3,10,11 2,10,3,11 3,7,11,15	-0-1 } II -0-1 II -0-1 } II -0-1 I	PIs 4,12 1,3,9,1 2,3,10,1 3,7,11,1 9,11,13,	$ \begin{array}{c} (12,14) \\ (11,15) \\ (13,15) \\ (14,15) \end{array} $ $ \begin{array}{c} -100 \\ 1-0-1 \\ 1-01-5 \end{array} $ $ \begin{array}{c} -15 \\ 1-1-1 \\ 15 \end{array} $ $ \begin{array}{c} 15 \\ 1-1-1 \end{array} $	11-1

PI chart	_ ,	,								
14	mž	\m3	104	m7	mg.	mil	M12	m13	m 14	
8CD 4,12			8			41.14	×			
BD 1,3,9,11		×	200	1	×	X				
Bc 2,3,10,11	(X)	×				×		1001		
CD 3,7,11,15		×	411	8		×		100		
AD 9,11,13,15			241		X	×		X		31
AC 10,11,14,15			. 110		1	×		-00	X	
AB 12,13,14,15	1 50		-131		8		×	×	X	

Essential PDs -> BCD, BC, CD.

These 3 terms together cover menterns 2,3,4,7,11 & 12 Remaining menterns to be covered are 9,13 & 14.

- ... We should select a minimum no! of PI, that cover these 3
- 1) 9 can be covered by BD or AD. We select AD as this term covers both 9 and 13.
- 2) Now, only 4 is left. This can be conered by AC or AB we can chose any one of these.
 - ... Minimum sopredution is

BCD+Bc+CD+AD+AC

BCD+BC+CD+AD+AB

3	Find all minimum SOP solutions for the function using Petrick's method
	$F(a, b, c, d) = \Sigma m (0, 3, 4, 5, 7, 9, 11, 13)$

3. F(a,b,c,d) = Em (0,3,4,5,7	
	Column 2
0 0000 Index 0. 0 0000 0,4	0_00_0
3 0011 Index 1 4 0100 15	
4 01000	010-
5 0101 - Index 2 3 0011 3-	7 0-11 (-11)
	1 -011 are
1011	7 01-1 PDs.
Index 3	13 _ 101
	10-1
13 1101/ 9,	13 1-01
PDs.	
0,4 0_00 ACD	
415 010 - ABC	
3.7 0-11 ACD	
3.11 -011 BCD	
5.7 01-1 ABD	
5/13 -101 BCD	
9,11 10-1 ABD	
9,13 1-01 ACD	
PI chast	
# PIs [mo m3 m4 m5 m7 m9	m11 m13
EPI	9 18 9 18 1
ACDOM X	
ABC 415 X X	Pı
X X	P2
ACD 3,1	X P3
BCD 3,111 ×	P4
100 57	00 0
513	0-
ABD 9,11 X	× P6
X	X / P7
ACD 9,13	

ACD is an essential PI. It covers mentions 0 and 4.

So only remaining PDs need to be considered in Petrick's method to cover minterns 3,5,7,9,11 & 13 Naming them as P1, P2. ... P7.

0° P = (P2+P3)(P1+P4+P5)(P2+P4)(P6+P7) (P3+P6) (P5+P7)

= (P2+P3) (P2+P4) => P2+P3P4 (P6+P7) (P6+P3) => P6+ B767

50 P = (P3+P6)(P+P5P6)(P1+P4+P5)(P2+P4) (P1+P4+P5) (P5+P7) => P5+P1P7+P4P7

· · · P = (P2+P3P4)(P6+P3P7)(P5+P1P7+P4P7)

= (P2 P6 + P2 P3P+ P3 P4 P6 + P3 P4 P7) (P5 + P1 P7 + P4 P7)

= \$P_2 P_5 P_6 \$ + P_2 P_3 P_5 P_7 + P_3 P_4 P_5 P_6 + P_3 P_4 P_5 P_7 + P, B, P6 P7 + P, P2 P3 P7 + P, P3 P4 P6 P7 + P, P3 P4 P7 +

Pary Po P7 + BB4P7 + BP4P6P7 + BP4P7.

= P2 P5 P6 + P3 P4 P7 + P2 P3 P5 P7 + P3 P4 P5 P6 +

4 Using the method of map-entered variables, use 4-variable maps to find a minimum SOP expression for:

(a) $F(A, B, C, D, E) = \sum m(0, 4, 6, 13, 14) + \sum d(2, 9) + E(m_1 + m_{12})$

(b) $Z(A, B, C, D, E, F, G) = \Sigma m (2, 5, 6, 9) + \Sigma d (1, 3, 4, 13, 14) + E(m_{11} + m_{12}) + Fm_{10} + Gm_0$

MS. = AD + ACD + BCD

2	When &	1=			
	AB Y	CDI	0	4	CT
	AB	X	0	0	X
	AB _	12	0	0	X
	AB	a	X	0	X.
	43	0	X	0	0

» P = MSO + MSI
=
$$\overline{A}\overline{D} + A\overline{C}D + BC\overline{D} + (\overline{A}\overline{B}\overline{C}E/\overline{B}\overline{C}DE) + (\overline{A}\overline{B}\overline{C}E/\overline{B}\overline{C}DE)$$

(b) Z(A,B, C,D,E,F,G) = Em(2,5,6,9) + Ed(1,3,4)

13,14)+, E(m1+m12)+.fm10+6m

ABUS	CD.	ED	CD	сб
ĀB	G	X	X	1 2
ĀB .	X	15	0 7	16
AB	E 12	X	0 15	× ny
AB]	08	1 9	E	Flos

	5 (a)	In the circuit shown below, assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns. Initially $A = B = C = 0$ and $D = 1$; C changes to 1 at time 2 ns. Draw a timing diagram showing the glitch corresponding to the hazard.
ı		
	(b)	Identify the hazard as per the circuit given below. Modify the circuit so that it is hazard-free.

Show how two 2:1 multiplexers (with no added gates) could be connected to form a 3:1 MUX.

Input selection should be as follows:

If AB = 00, select I₀

If AB = 01, select I₁

If AB = 1- (B is a don't care), select I₂.

(b) Implement AND gate and OR gate using 2:1 MUX

(c) Using four-valued logic, find A, B, C, D, E, F, G and H from the below circuit:

- 7 (a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain.
 - (b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns.

	When the input to a combinational cincu
	may appear in the suite of
	This leads to Huzards in Combinational
	And the
_	Different Egper of Hozards are
	The Sale of
	3 Dynamic Hazard.
_	Static 1 Hannel
	The panes to any single inner
	the Combination of Otomorophia
	go to O when it Should remain a combi
	Then we say that cincuit has a Static I hay
	Static Y Hazard.
	2) Static O Hazard:
	If the output may momentanily
	ne Say that the count has a
	Static O Hazand
	0 0
	static o Hazard.

Implementation table for G₀:

