Scheme Of Evaluation Internal Assessment Test 1 – Sept.2019 | Sub: | | Analog and Digital Electronics | | | | | Code: | 18CS33 | | |-------|------------|--------------------------------|--------|---------------|----|------|-------|---------|-----| | Date: | 09/09/2019 | Duration: | 90mins | Max
Marks: | 50 | Sem: | Ш | Branch: | ISE | Note: Answer Any Five Questions | Que | Question Description # | | Marks Distribution | | Max
Marks | |-----|--|---|--------------------|-------|--------------| | | a) | Find the minimum SOP and the minimum POS for
each function: | | | | | | | $F(a, b, c, d) = \Pi M (0, 1, 6, 8, 11, 12)$ | 2.5M x | | | | | | Using K-Map for SOP form, calculate minimum SOP | 2 | 5M | | | 1 | Using K-Map for POS form, calculate minimum
POS | | | 10 M | | | | b) | F(a, b, c, d) = Σ m (1, 3, 4, 11) + Σ d (2, 7, 8, 12, 14, 15) | | | | | | | Using K-Map for SOP form, calculate minimum
SOP | 2.5M x
2 | 5M | | | | | Using K-Map for POS form, calculate minimum
POS | | | | | | | Find a minimum SOP solution using Quine McCluskey method | | | | | | | $F(a, b, c, d) = \Sigma m (2, 3, 4, 7, 9, 11, 12, 13, 14) + \Sigma d$ | 4M | | | | | 2 | (1, 10, 15) | 2M | 10M | 10 M | | | - | Grouping minterms based on index and
Identifying prime implicants | 2M | 101/1 | 10.11 | | | | Preparing Prime Implicant chart | 2M | | | | | | Identifying Essential PI Obtaining a minimum solution | | | | | | | Find all minimum SOP solutions for the function using | 4M | | | | | 3 | Petrick's method | 2M | 10M | 10 M | | | | F(a, b, c, d) = Σ m (0, 3, 4, 5, 7, 9, 11, 13) • Grouping minterms based on index and | 2M | | | | | | Identifying PI and preparing PI chart Eliminating Essential PI and its corresponding minterms and obtaining logic function P in terms of rows P1, P2, etc in PI chart Solving for P using Boolean theorems Identifying all possible minimum solutions for given function from solution of P. | 2M | | | |---|----|---|----------|----|------| | | a) | Using the method of map-entered variables, use 4-variable maps to find a minimum SOP expression for:
$F(A, B, C, D, E) = \Sigma m (0, 4, 6, 13, 14) + \Sigma d (2, 9) + E(m_1 + m_{12})$ | 2M | | | | | | K-Map for given function K-Map for E=0 Obtain MS0 K-Map for E=1 Obtain MS1 Obtain final minimum solution | 2M
1M | 5M | | | 4 | b) | Z(A, B, C, D, E, F, G) = Σ m (2, 5, 6, 9) + Σ d (1, 3, 4, 13, 14) + E(m ₁₁ + m ₁₂) + Fm ₁₀ + Gm ₀ • K-Map for given function • K-Map for E=0, F=0, G=0 • Obtain MS0 • K-Map for E=1 • Obtain MS1 • K-Map for F=1 • Obtain MS2 • K-Map for G=1 • Obtain MS3 • Obtain final minimum solution | 1M x 5 | 5M | 10 M | | 5 | a) | In the circuit shown below, assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns. Initially A = B = C = 0 and D = 1; C changes to 1 at time 2 ns. Draw a timing diagram showing the glitch corresponding to the hazard. • Show timing diagrams for all inputs • Obtain timing diagrams for intermediate outputs • Obtain timing diagram for output and showing the hazard | 2M x 3 | 6M | 10 M | | | b) | Identify the hazard as per the circuit given below. | | | | |---|----|--|--------|----|-----| | | ٠, | Modify the circuit so that it is hazard-free. | | | | | | | Identify the type of hazard Obtain the circuit expression with hazard Draw the circuit with hazard and mark the hazard in it Obtain the hazard free expression and draw the corresponding circuit diagram | 1M x 4 | 4M | | | | | | | | | | 6 | a) | Show how two 2:1 multiplexers (with no added gates) could be connected to form a 3:1 MUX. Input selection should be as follows: If AB = 00, select I ₀ If AB = 01, select I ₁ If AB = 1- (B is a don't care), select I ₂ . • Show the implementation with necessary details | 2M | 2M | 10M | | | b) | Implement AND gate and OR gate using 2:1 MUX Implement AND gate using 2:1 MUX Implement OR gate using 2:1 MUX | 2M x 2 | 4M | | | a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 Write the truth table for Binary to Gray code converter 8 and realize the same using four 8:1 multiplexers. • Binary to Gray code conversion using truth table 4M 0.5M x 8 4M 2M x 3 6M 2M x 3 6M 2M x 2 4M 10 M | | c) | Using four-valued logic, find A, B, C, D, E, F, G and H from the below circuit: | | | | |--|---|----|---|--------|-----|------| | a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 10 M • Show timing diagram of V • Show timing diagrams of Z Write the truth table for Binary to Gray code converter 4M and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | 0 B F G F G F G | | 4M | | | What are the different types of hazards? Explain. • Description of hazards • 3 types of hazards • Description of each type with diagram/example b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 7 10 M • Show timing diagram of V • Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | | | | | | Description of hazards 3 types of hazards Description of each type with diagram/example Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 3 6M 2M x 3 6M 2M x 3 6M 10 M 10 M | | a) | What do you mean by hazards in combinational logic? | | | | | Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10 M 10 M | | | What are the different types of hazards? Explain. | | | | | Description of each type with diagram/example Dobtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. The show timing diagram of V | | | Description of hazards | 2M x 3 | 6M | | | b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | 3 types of hazards | | | | | below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 2M x 2 4M Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 2 4M 10 M 10 M | | | Description of each type with diagram/example | | | | | Show timing diagram of V Show timing diagrams of Z Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. 2M x 2 4M 4M 10 M 10 M | | b) | below. Assume that the AND gate has a delay of 10 | | | | | Write the truth table for Binary to Gray code converter and realize the same using four 8:1 multiplexers. Market Show timing diagrams of Z Write the truth table for Binary to Gray code converter and the same using four 8:1 multiplexers. Market Show timing diagrams of Z | 7 | | X - 1 | 2M x 2 | 4M | 10 M | | Write the truth table for Binary to Gray code converter 4M and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | Show timing diagram of V | | | | | 8 and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | Show timing diagrams of Z | | | | | 8 and realize the same using four 8:1 multiplexers. 2M 10M 10 M | | | | | | | | | | | Write the truth table for Binary to Gray code converter | 4M | | | | Binary to Gray code conversion using truth table 4M | | 8 | and realize the same using four 8:1 multiplexers. | 2M | 10M | 10 M | | | | | Binary to Gray code conversion using truth table | 4M | | | - Implementation table for G3, G2, G1 and G0 - Obtain all 8 inputs to be given to each 8:1 MUX for G3, G2, G1 and G0 and implementation of four 8:1 multiplexers giving the above obtained inputs ## **SOLUTIONS** | 1 | Find the minimum SOP and the minimum POS for each function: | |-----|---| | (a) | $F(a, b, c, d) = \Pi M (0, 1, 6, 8, 11, 12)$ | | (b) | $F(a, b, c, d) = \Sigma m (1, 3, 4, 11) + \Sigma d (2, 7, 8, 12, 14, 15)$ | | | | | 2 | Find a minimum SOP solution using Quine McCluskey method | |---|---| | | $F(a, b, c, d) = \Sigma m (2, 3, 4, 7, 9, 11, 12, 13, 14) + \Sigma d (1, 10, 15)$ | | 2 0 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 | 2001 Index 1 001 Index 2 001 Index 3 001 Index 4 | 1 000
2 001
4 010
3 00
9 100
10 101
12 110
7 011
11 101
13 110
14 111 | $\begin{array}{c} (1,3) \\ (1,3) \\ (1,9) \\ (2,10) \\ (2,10) \\ (3,11) \\ (1$ | $ \begin{array}{c c} 00 - 1 \\ -001 \\ \hline -001 \\ \hline -010 \\ \hline -010 \\ \hline -010 \\ \hline -010 \\ \hline -011 \\ \hline 10 - 1 \\ \hline 1-01 \\ \hline 1-10 \\ \hline 110 - 0 \end{array} $ | |---|--|---|---|--| | 1,3,9,11 -
1,9,3,11
2,3,10,11
2,10,3,11
3,7,11,15 | -0-1 } II II -0-1 } I | PIs
4,12
1,3,9,1
2,3,10,1
3,7,11,1
9,11,13, | $ \begin{array}{c} (12,14) \\ (11,15) \\ (13,15) \\ (14,15) \end{array} $ $ \begin{array}{c} -100 \\ 1-0-1 \\ 1-01-5 \end{array} $ $ \begin{array}{c} -15 \\ 1-1-1 \\ 15 \end{array} $ $ \begin{array}{c} 15 \\ 1-1-1 \end{array} $ | 11-1 | | PI chart | _ , | , | | | | | | | | | |----------------|------------|-----|-------|----|-----|-------|-----|------|------|----| | 14 | mž | \m3 | 104 | m7 | mg. | mil | M12 | m13 | m 14 | | | 8CD 4,12 | | | 8 | | | 41.14 | × | | | | | BD 1,3,9,11 | | × | 200 | 1 | × | X | | | | | | Bc 2,3,10,11 | (X) | × | | | | × | | 1001 | | | | CD 3,7,11,15 | | × | 411 | 8 | | × | | 100 | | | | AD 9,11,13,15 | | | 241 | | X | × | | X | | 31 | | AC 10,11,14,15 | | | . 110 | | 1 | × | | -00 | X | | | AB 12,13,14,15 | 1 50 | | -131 | | 8 | | × | × | X | | Essential PDs -> BCD, BC, CD. These 3 terms together cover menterns 2,3,4,7,11 & 12 Remaining menterns to be covered are 9,13 & 14. - ... We should select a minimum no! of PI, that cover these 3 - 1) 9 can be covered by BD or AD. We select AD as this term covers both 9 and 13. - 2) Now, only 4 is left. This can be conered by AC or AB we can chose any one of these. - ... Minimum sopredution is BCD+Bc+CD+AD+AC BCD+BC+CD+AD+AB | 3 | Find all minimum SOP solutions for the function using Petrick's method | |---|--| | | $F(a, b, c, d) = \Sigma m (0, 3, 4, 5, 7, 9, 11, 13)$ | | 3. F(a,b,c,d) = Em (0,3,4,5,7 | | |------------------------------------|--------------| | | Column 2 | | 0 0000 Index 0. 0 0000 0,4 | 0_00_0 | | 3 0011 Index 1 4 0100 15 | | | 4 01000 | 010- | | 5 0101 - Index 2 3 0011 3- | 7 0-11 (-11) | | | 1 -011 are | | 1011 | 7 01-1 PDs. | | Index 3 | 13 _ 101 | | | 10-1 | | 13 1101/ 9, | 13 1-01 | | PDs. | | | 0,4 0_00 ACD | | | 415 010 - ABC | | | 3.7 0-11 ACD | | | 3.11 -011 BCD | | | 5.7 01-1 ABD | | | 5/13 -101 BCD | | | 9,11 10-1 ABD | | | 9,13 1-01 ACD | | | PI chast | | | # PIs [mo m3 m4 m5 m7 m9 | m11 m13 | | EPI | 9 18 9 18 1 | | ACDOM X | | | ABC 415 X X | Pı | | X X | P2 | | ACD 3,1 | X P3 | | BCD 3,111 × | P4 | | 100 57 | 00 0 | | 513 | 0- | | ABD 9,11 X | × P6 | | X | X / P7 | | ACD 9,13 | | ACD is an essential PI. It covers mentions 0 and 4. So only remaining PDs need to be considered in Petrick's method to cover minterns 3,5,7,9,11 & 13 Naming them as P1, P2. ... P7. 0° P = (P2+P3)(P1+P4+P5)(P2+P4)(P6+P7) (P3+P6) (P5+P7) = (P2+P3) (P2+P4) => P2+P3P4 (P6+P7) (P6+P3) => P6+ B767 50 P = (P3+P6)(P+P5P6)(P1+P4+P5)(P2+P4) (P1+P4+P5) (P5+P7) => P5+P1P7+P4P7 · · · P = (P2+P3P4)(P6+P3P7)(P5+P1P7+P4P7) = (P2 P6 + P2 P3P+ P3 P4 P6 + P3 P4 P7) (P5 + P1 P7 + P4 P7) = \$P_2 P_5 P_6 \$ + P_2 P_3 P_5 P_7 + P_3 P_4 P_5 P_6 + P_3 P_4 P_5 P_7 + P, B, P6 P7 + P, P2 P3 P7 + P, P3 P4 P6 P7 + P, P3 P4 P7 + Pary Po P7 + BB4P7 + BP4P6P7 + BP4P7. = P2 P5 P6 + P3 P4 P7 + P2 P3 P5 P7 + P3 P4 P5 P6 + 4 Using the method of map-entered variables, use 4-variable maps to find a minimum SOP expression for: (a) $F(A, B, C, D, E) = \sum m(0, 4, 6, 13, 14) + \sum d(2, 9) + E(m_1 + m_{12})$ (b) $Z(A, B, C, D, E, F, G) = \Sigma m (2, 5, 6, 9) + \Sigma d (1, 3, 4, 13, 14) + E(m_{11} + m_{12}) + Fm_{10} + Gm_0$ MS. = AD + ACD + BCD | 2 | When & | 1= | | | | |---|--------|-----|---|---|----| | | AB Y | CDI | 0 | 4 | CT | | | AB | X | 0 | 0 | X | | | AB _ | 12 | 0 | 0 | X | | | AB | a | X | 0 | X. | | | 43 | 0 | X | 0 | 0 | » P = MSO + MSI = $$\overline{A}\overline{D} + A\overline{C}D + BC\overline{D} + (\overline{A}\overline{B}\overline{C}E/\overline{B}\overline{C}DE) + (\overline{A}\overline{B}\overline{C}E/\overline{B}\overline{C}DE)$$ (b) Z(A,B, C,D,E,F,G) = Em(2,5,6,9) + Ed(1,3,4) 13,14)+, E(m1+m12)+.fm10+6m | ABUS | CD. | ED | CD | сб | |------|------|-----|------|------| | ĀB | G | X | X | 1 2 | | ĀB . | X | 15 | 0 7 | 16 | | AB | E 12 | X | 0 15 | × ny | | AB] | 08 | 1 9 | E | Flos | | | 5 (a) | In the circuit shown below, assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns. Initially $A = B = C = 0$ and $D = 1$; C changes to 1 at time 2 ns. Draw a timing diagram showing the glitch corresponding to the hazard. | |---|-------|--| | ı | | | | | (b) | Identify the hazard as per the circuit given below. Modify the circuit so that it is hazard-free. | Show how two 2:1 multiplexers (with no added gates) could be connected to form a 3:1 MUX. Input selection should be as follows: If AB = 00, select I₀ If AB = 01, select I₁ If AB = 1- (B is a don't care), select I₂. (b) Implement AND gate and OR gate using 2:1 MUX (c) Using four-valued logic, find A, B, C, D, E, F, G and H from the below circuit: - 7 (a) What do you mean by hazards in combinational logic? What are the different types of hazards? Explain. - (b) Obtain the timing diagram for the circuit shown below. Assume that the AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. | | When the input to a combinational cincu | |---|---| | | may appear in the suite of | | | | | | This leads to Huzards in Combinational | | | And the | | _ | Different Egper of Hozards are | | | The Sale of | | | 3 Dynamic Hazard. | | _ | Static 1 Hannel | | | The panes to any single inner | | | the Combination of Otomorophia | | | go to O when it Should remain a combi | | | Then we say that cincuit has a Static I hay | | | | | | Static Y Hazard. | | | | | | 2) Static O Hazard: | | | If the output may momentanily | | | ne Say that the count has a | | | Static O Hazand | | | 0 0 | | | static o Hazard. | ## Implementation table for G₀: