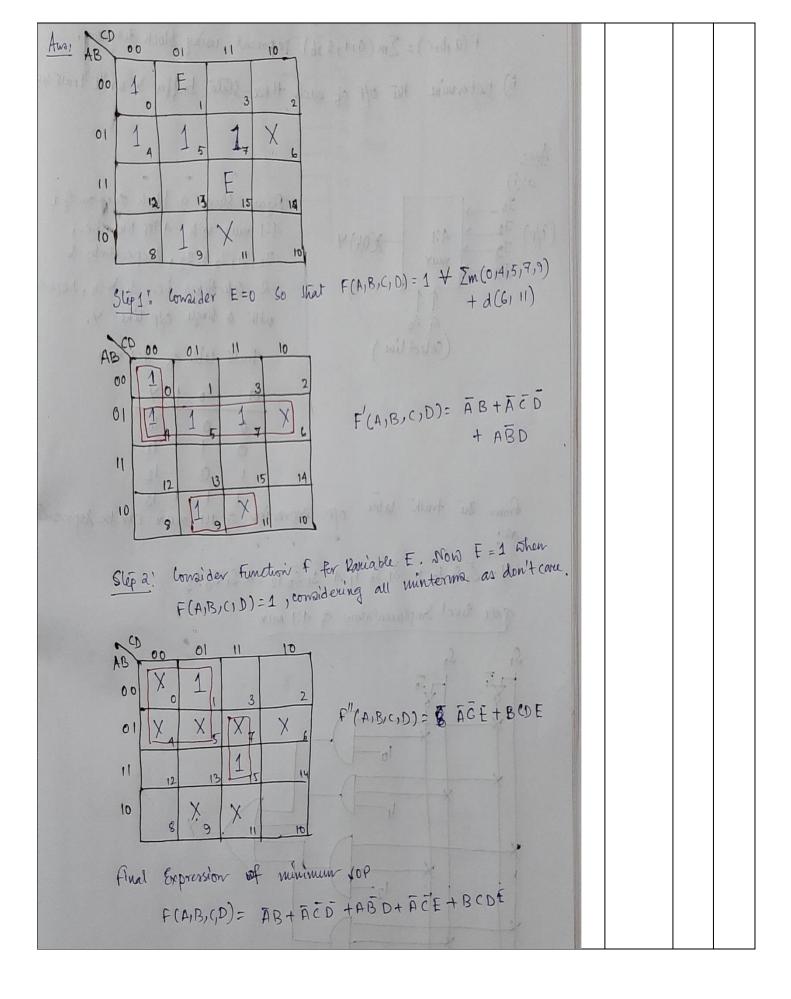
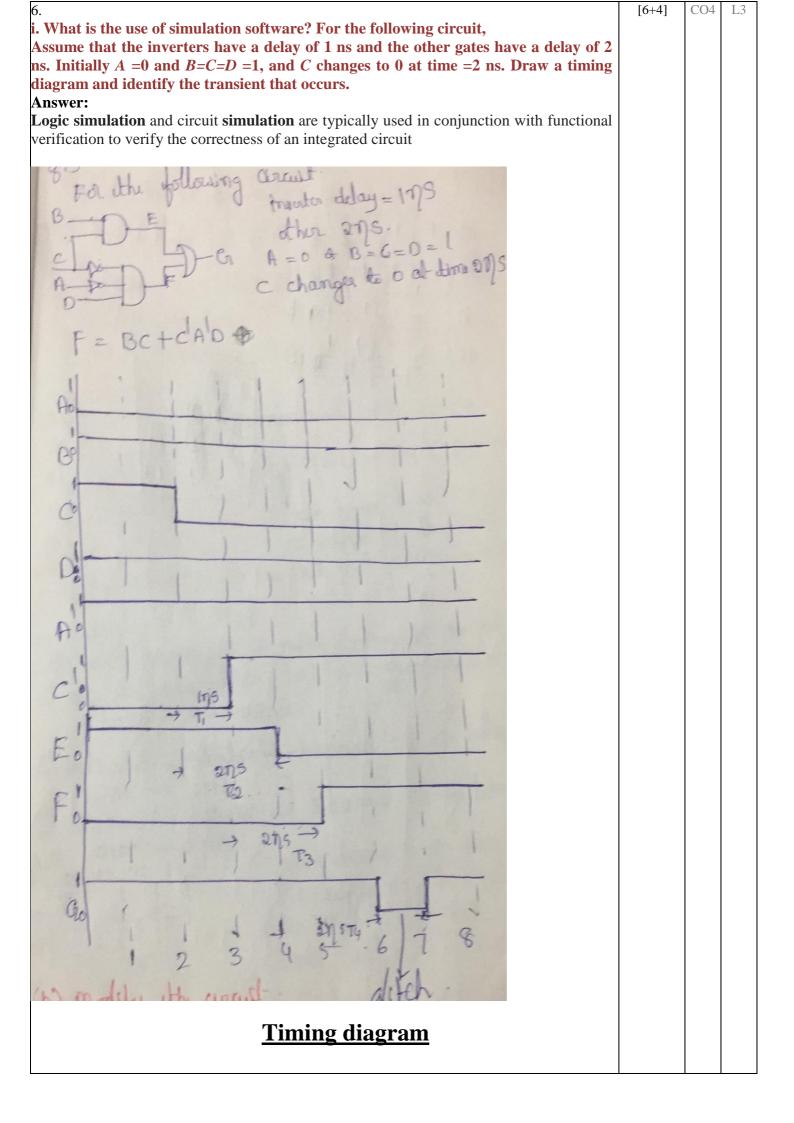
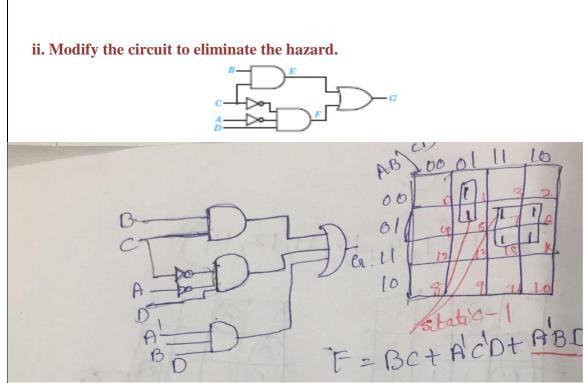

	Iı	nternal Asses	sment Test 1	– Sep-2019							
Sub:	Analog and Digi	ital Electronic	s			Sub Code:	18CS33	Branch:	CS	SE	
Date:	09/09/19	Duration:	90 mins	Max Marks:	50	Sem/ Sec:	3 rd /A,B,C			OE	BE
	Answ	ver any FIVE F	ULL Questions					MARK	S	СО	RB T
1.								[2+4]	CO3	L1,L3
i.Defin	e										
1.	Implicants										
2.	Prime Impli	cants									
3.	Essential Pri	ime implica	ints								
4.	Selective pri	me implica	nts								
Answ	er:										
1.	Implicants:										
	-	a product/m	interm term	in Sum of Pr	oduc	ts (SOP) or	sum/maxter	n			
	term in Prod	uct of Sums	(POS) of a	a Boolean fun licants are AE	ction	. E.g., cons					
			, Der mp		,						
2.	Prime Impli	cants:									
		-		e up of bunch							
	allowed by d groups forme		-	called prime	imp	licants(PI)	i.e. all possit	ole			
	groups torme	a in it map									
			1) (3)							
			\sim	\rightarrow							
					_						
			1	1							
					-						
		2)	1 1							
		Ŭ			-						
			No. of P	rime Implica	ants	= 3					
3.	Essential Pri	ime Implica	ants								
	These are the	ose subcube	s(groups) w	which cover at	least	one minter	m that can't	be			
	covered by a	any other p	rime impli	cant. Essentia	al pr	ime implic	ants (EPI) a	are			
	those prime i	mplicants w	hich alway	s appear in fir	nal sc	olution.					
			(1)	(2)							
			1								
		No.	of Essenti	al Prime Imp	olicar	nts = 2					
4.	SelectivePrin	meImplicar	nts								
		-		are neither e	essen	tial nor re	dundant prir	ne			
				e implicants							
				ey may appea							
	appear in son						-				


D 00 OC 1 01 1) 10 10 10 8 Minimum Swm of products expression = BCD+ABD+ABC+ABC+AD All are essential prime gmplicant because each from 1 to 5 one of the minterm essered by only sing prime implieant 2 [10] CO3 L3 2. A switching circuit has two control inputs (C1 and C2), two data inputs (X1 and X2), and one output (Z). The circuit performs logic operations on the two data inputs, as shown in this table: **C1 C2** Function 0 0 X1X2 0 1 X1⊕X2 1 0 X1+X2 1 X1=X2 1 i. Derive a truth table for Z. ii. Use a Karnaugh map to find a minimum OR-AND gate circuit to realize Z. Answer:

XI X2 Z Awa Cz Z (C1,C2, X1, X2)= \sum_{m} (3,5,6,9,10) 11,12,15) CI 0 -0 0 0 0 0 0 1 0 0 X1 X2 1 0 X1.X2 ×1×2 0 XI X2 1×1×2 ×1×2 10 0 0 C1 C2 2 0011 de 3 CIEZ 0 1 0 0 4 Or 0 1 0 01 EIG 5 15 XI OX2 1 0 1 6 10 0 1 1 1 0 1 902 7 13 14 00 0 8 10 1 CIE2 8 9 1 01 10 9 X1+X2 10 10 10 10 11 11 Z(C1, C21 X1, X2) 12 11 0 0 10 = C2 X1 X2 + C1 C2 X2 + C1 C2 X1 0 (X1=X2 01 13 1 + C1 X1 X2 + C1 C2 X1 X2 + 0 10 14 1 1 CI C2 X1 X2 + G C2 X1 X2 1 11 15 1 1 Circuit Realization Using AND-OR Logic. $z(a, (2, x_1, x_2) = \tilde{c}_2 \times 1 \times 2 + c_1 \tilde{c}_2 \times 2 + c_1 \tilde{c}_2 \times 1 + c_1 \times 1 \times 2$ + $\overline{c_1} c_2 \overline{x_1} \overline{x_2} + \overline{c_1} c_2 \overline{x_1} \overline{x_2} + c_1 c_2 \overline{x_1} \overline{x_2}$ D Г D D CA-L


	ymeth chart.	nod. Fi	nd pri	me imj	plicant	um-of-products solution, using the Quine- and essential prime implicant using prime (1, 13, 14) + d(2, 5, 15)	[10]	CO3	L3
Decima l Equiva lent	A	В	С	D	F				
0	0	0	0	0	0				
1	0	0	0	1	0				
2	0	0	1	0	X				
3	0	0	1	1	1				
4	0	1	0	0	1				
5	0	1	0	1	X				
6	0	1	1	0	1				
7	0	1	1	1	1				
8	1	0	0	0	1				
9	1	0	0	1	1				
10	1	0	1	0	0				
11	1	0	1	1	1				
12	1	1	0	0	0				
13	1	1	0	1	1				
14	1	1	1	0	1 V				
15	1	1	1	1	Х				

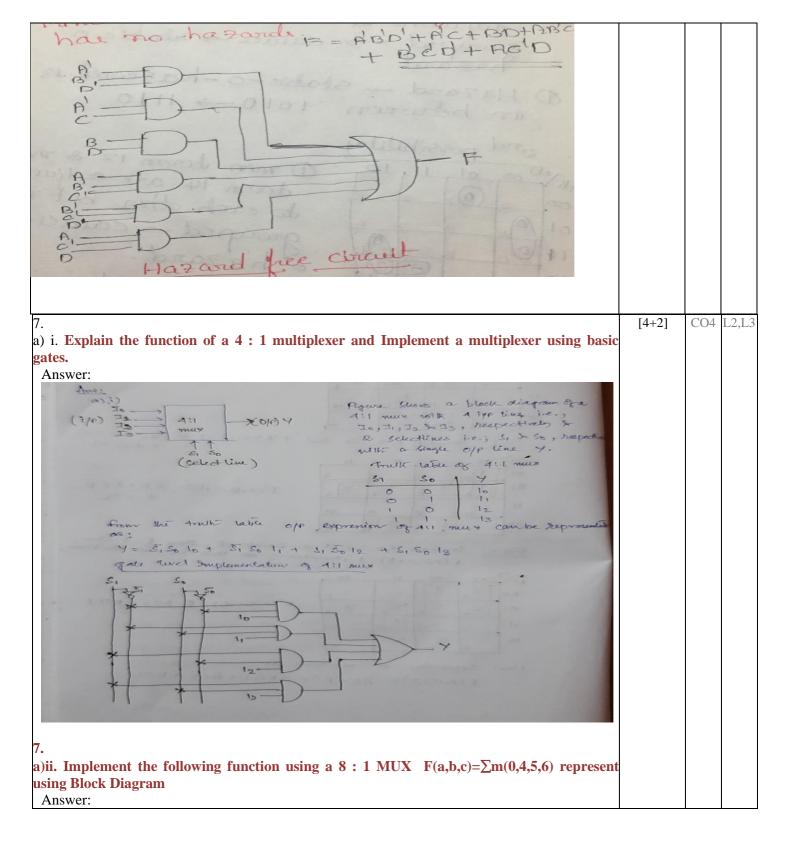


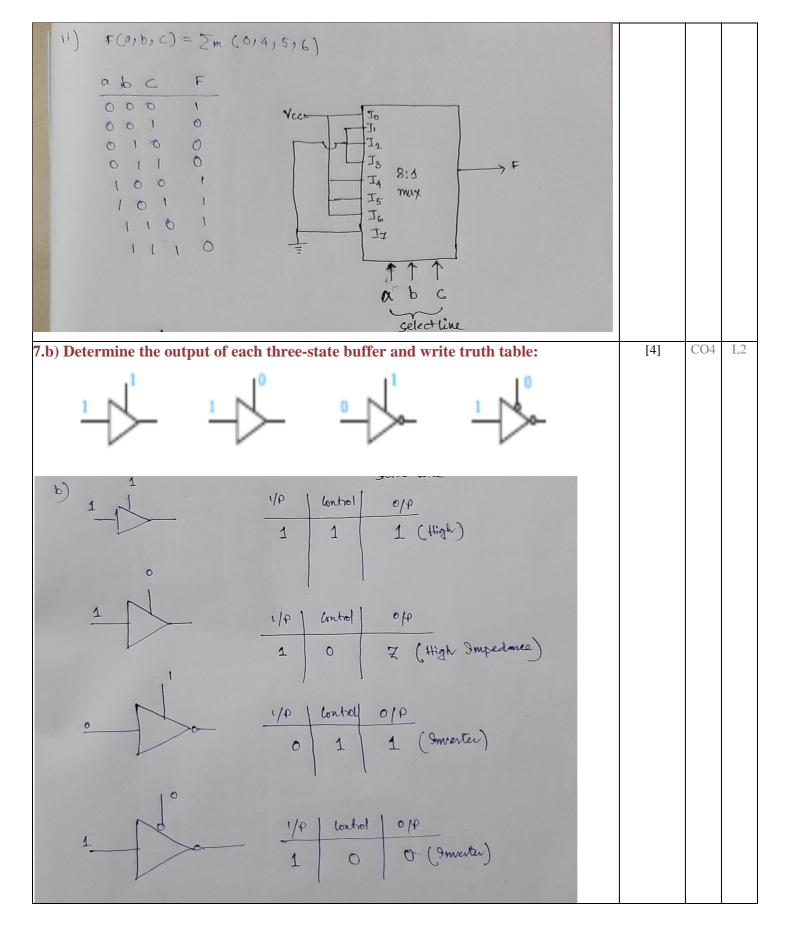
Prince	Implican	t Good	P M	us [m.4]	malm		as mi	0	1			
		(8)9			- -		×					
Ā.	с	(2,3)6	,,マ) 、	×	XXX			1.3				
Ā	В	C4,596	, マフ	\bigotimes	X	2		101 1				
с.	D	(3,7,11,	15) ×			×	×	×				
B	DC	5,7,13	5,15)		×							
B	c (6,7,11	(211,1		×		1 200		()			
~ A -	DC	9,11,13	,15)		0 1 -	0	×	$\langle \times \rangle$				
5475:	Add mint	prime :	on plican	ete to mi	inimum !	expression	n of 4	until	1 all			
	finin (CA, B, C,	D) = A	BE + F Essenti	FBH B al Arime	c) Juiplic	ants &	out of	9			
	minte	erme an	e covers	ed i.e.,	ma, m	no, my,	mg, me	, mi4				
	This	to ce	over au	e suit	minter	no we	have	to a	to two			
	extra	a Prime	Smplica result	nts From	n the	Prince In	uplicant	Charl	+.			
					C+ AC	dA+						
					Bic I+ A	DACD						
				or,								
	341	and for the	ABC	+ AB+	BC + BD	+ 0	216073					
				• • •	e					[10]	CO3	L
ing the r	nothod	of man a	ntored ve	PIODIOG 11	CO TONE NO	riabla m	one to fi	nd				
-		_	ntered van ts expres				-		(0) + d(0)	[10]	000	
nimum	sum-of	f-produc	ts expres	sion for	F(A, B,	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum	sum-of	f-produc	ts expres	sion for		(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(<i>m</i> 1, swer:	sum-of <i>m</i> 15), v	f-product where th	ts expres e <i>m</i> 's rej	sion for present	F(A, B, minterms	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum ⊢ E(m1, swer: recimal	sum-of	f-produc	ts expres	sion for	F(A, B,	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum ⊢ E(m1, swer: recimal	sum-of <i>m</i> 15), v	f-product where th	ts expres e <i>m</i> 's rej	sion for present	F(A, B, minterms	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, wer: ecimal uivalent	sum-of <i>m</i> 15), v	f-produc where th B	ts expres e <i>m</i> 's rej	present	F(A, B, minterms	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: lecimal uivalent 0	sum-of <i>m</i> 15), v A	f-product where th B 0	c 0	D	F(A, B, minterms	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: becimal uivalent 0 1	sum-of <i>m</i> 15), v A 0 0	F-product where th B 0 0	c 0 0	D 0 1	F(A, B, minterms F 1 0(E)	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: recimal uivalent 0 1 2	sum-of m15), v A 0 0 0	B 0 0 0	c001	D010	F(A, B, minterms F 1 0(E) 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
$\begin{array}{c} \text{nimum} \\ \text{H} \text{E}(m1, \\ \text{Swer:} \\ \text{ecimal} \\ \text{uivalent} \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \end{array}$	sum-of m15), v A 0 0 0 0 0	F-product where th B 0 0 0 0 0	c 0 0 1 1 1	DD01011	F(A, B, minterms F 1 0(E) 0 0 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
$\begin{array}{r} \text{nimum} \\ \text{wer:} \\ \text{ecimal} \\ \text{uivalent} \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \end{array}$	sum-of <i>m</i> 15), v A 0 0 0 0 0 0	F-product where the B 0 0 0 0 1	c 0 0 1 1 0	DD01010	F(A, B, minterms F 1 0(E) 0 0 1	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum $\mathbf{E}(m1, \mathbf{k}) \in \mathbf{E}(m1, \mathbf{k})$ wer: ecimal uivalent 0 1 2 3 4 5	sum-of m15), v A 0 0 0 0 0 0 0 0	B 0 0 0 0 1 1	c 0 0 0 1 0 0 0	D 0 1 0 1 0 1 0 1 0 1 1	F(A, B, minterms F 1 0(E) 0 0 1 1 1	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum $\mathbf{E}(m1, \mathbf{K})$ wer: ecimal uivalent 0 1 2 3 4 5 6	sum-of m15), v A 0 0 0 0 0 0 0 0 0	B 0 0 0 0 1 1 1 1	c 0 0 0 1 0 0 1 1 1 0 1	D 0 1 0 1 0 1 0 1 0 1 0	F(A, B, minterms F 1 0(E) 0 1 1 X	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: recimal uivalent 0 1 2 3 4 5 6 7	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 0	F-product where the B 0 0 0 0 1 1 1 1 1 1 1	c 0 0 0 1 1 0 0 1 1 1 1 1 1	D D 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1	F(A, B, minterms F 1 0(E) 0 1 1 X 1	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: becimal uivalent 0 1 2 3 4 5 6 7 8	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 1	F-product where the B 0 0 0 0 0 1 1 1 1 1 1 0	c 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	F(A, B, minterms F 1 0(E) 0 1 1 X 1 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum F E(m1, m) wer: ecimal uivalent 0 1 2 3 4 5 6 7 8 9	sum-of m15), v A 0 0 0 0 0 0 0 0 0 1 1 1	F-product where the B 0 0 0 0 0 1 1 1 1 1 1 0 0 0	c 0 0 1 0 0 1 0	D 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	F(A, B, minterms F 1 0(E) 0 1 1 X 1 0 1 1 0 1 0 1 1 0 1	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, wer: ecimal uivalent 0 1 2 3 4 5 6 7 8 9 10	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 1 1 1 1	B 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	C 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	F(A, B, minterms F 1 0(E) 0 1 1 X 1 0 1 0 1 0 1 0 1 0 1 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, wer: ecimal uivalent 0 1 2 3 4 5 6 7 8 9 10 11	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	B 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1	D D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	F(A, B, minterms F 1 0(E) 0 1 1 X 1 0 1 0 1 0 X 1 0 X 1 0 X 1 0 X	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, wer: ecimal uivalent 0 1 2 3 4 5 6 7 8 9 10 11 12	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	F-product where the B 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1	c 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	F(A, B, F 1 0(E) 0 1 X 1 0 1 0 X 1 0 X 1 0 X 0 X 0 X 0 X 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		
nimum + E(m1, swer: becimal uivalent 0 1 2 3 4 5 6 7 8 9 10 11 12 13	sum-of m15), v A 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	B 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	F(A, B, minterms F 1 0(E) 0 1 1 X 1 0 1 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0	(C, D, E)	=m(0, 4)	1, 5, 7,		5,		

 1.3. Define 1. Propagation delay 2. Hazards 3. Static -0 hazards 4. Static -1 hazards 1.4. Propagation Delay:-Propagation delay, symbolized t_{pd}, is the time required for a digital signal to travel from the input(s) of a logic sate to the output 2. Hazards: a hazard in a digital circuit is a temporary disturbance in ideal operation of the circuit which if given some time, gets resolved itself. 3. Static-0 Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 1 before settling on 0, then it is a Static-1 hazard. 4. Static-0 Hazard: If the output is currently at logic state 1 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then it is a static-1 hazard. 5. Find two different minimum circuits which implement <i>P</i> using AND and OR gates. c. Identify two hazards in each circuit Answer: a. Consider the following logic function. <i>F(A, B, C, D) = m(0, 4, 5, 10, 11, 13, 14, 15)</i> 1. Find two different minimum circuits which implement <i>P</i> using AND and OR gates. c. Identify two hazards in each circuit Answer: a. Identify two hazards in each circuit Answer: a. Totentify the houtput is a train the moment of the minimum circuits which implement <i>P</i> using AND and OR gates. c. Identify two hazards in each circuit Answer: a. Identify two hazards in each circuit Answer: b. Find two different minimum circuits which implement <i>P</i> using AND and OR gates. c. Identify two hazards in each circuit Answer: a. Identify two hazards in each circuit Answer: b. Find two different minimum circuits which implement <i>P</i> using AND and OR gates. c. Identify two hazards in each circuit d. Move Multin Autometity the gates.<				
 Propagation Delays-Propagation delay, symbolized t_{pd}, is the time required for a digital signal to travel from the imput(s) of a <u>locit area</u> to the output Hazards: a hazard in a digital circuit is a temporary disturbance in ideal operation of the circuit which if given some time, gets resolved itself. Static-O Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 0 before settling on 0, then it is a Static-O hazard. Static-O Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then it is a Static-O hazard. Static-O Hazard: If the output is currently at logic state 1 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then it is a Static-O hazard. Static-O hazard. Find two different minimum circuits which implement <i>F</i> using AND and OR gates. Identify two hazards in each circuit Answer: Mawer: Mawer: Maxwer: Max	5a) iDefine 1. Propagation delay 2. Hazards 3. Static -0 hazards 4. Static -1 hazards	4+6	CO4	
 Propagation Delays-Propagation delay, symbolized t_{pd}, is the time required for a digital signal to travel from the imput(s) of a <u>locit area</u> to the output Hazards: a hazard in a digital circuit is a temporary disturbance in ideal operation of the circuit which if given some time, gets resolved itself. Static-O Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 0 before settling on 0, then it is a Static-O hazard. Static-O Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then it is a Static-O hazard. Static-O Hazard: If the output is currently at logic state 1 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then it is a Static-O hazard. Static-O hazard. Find two different minimum circuits which implement <i>F</i> using AND and OR gates. Identify two hazards in each circuit Answer: Mawer: Mawer: Maxwer: Max				
F(Å, B, C, D) = m(0, 4, 5, 10, 11, 13, 14, 15) 1. Find two different minimum circuits which implement F using AND and OR gates. 2. Identify two hazards in each circuit Answer:	 a digital signal to travel from the input(s) of a logic gate to the output 2. Hazards: a hazard in a digital circuit is a temporary disturbance in ideal operation of the circuit which if given some time, gets resolved itself. 3. Static-0 Hazard: If the output is currently at logic state 0 and after the input changes its state, the output momentarily changes to 1 before settling on 0, then it is a Static-0 hazard. 4. Static-1 Hazard: If the output is currently at logic state 1 and after the input changes its state, the output momentarily changes to 0 before settling on 1, then 			
1. Find two different minimum circuits which implement F using AND and OR gates. 2. Identify two hazards in each circuit Answer:	ii.Consider the following logic function.			
2 Identify two hazards in each circuit Answer:				
2. Identify two hazards in each circuit Answer:	• •			
Minimited expression F=AOD + BCD + AC F=AOD + AC F=	2. Identify two hazards in each circuit			
Stabic - 1 hazard (2) min town 13 & min town 15 are adjue mt to each other but not grouped-causes mt to each other but not grouped-causes (3) Hazard - Stabic - 1 - hazard is in between 1101 -> 1111 (2) Hazard - Stabic - 1 - hazard is in between 101 -> 1111 (2) Hazard - Stabic - 1 - hazard is in between 100 bloo - otol 100 - 0101 110 - 0101 13 adjucent to each 13 adjucent to each 13 adjucent to each 13 adjucent to each. 13 adjucent in town of the based	Answer:			
	Stabic - 1 hazard min town 13 & min town 15 are adjue nt to each other but not grouped-causes stable - 1 - hazard. O Hazard - Stable - 1 - hazard is in between 101 -> 1111 O Hazard - Stable - 1 - hazard is in between 101 -> 1111 O min town 5 & min town ho of 11 10 O min town 5 & min town 13 adjucent to each. 13 adjucent to each. 14 to but not grouped causes stable - 1 hazard. O Hazard - Static - 1 hazard. 0 Min town 5 & min town 13 adjucent to each. 10 Hazard - Static - 1 hazard. 0 Hazard - Static - 1 hazard. 0 Hazard - Static - 1 hazard.			
		L		

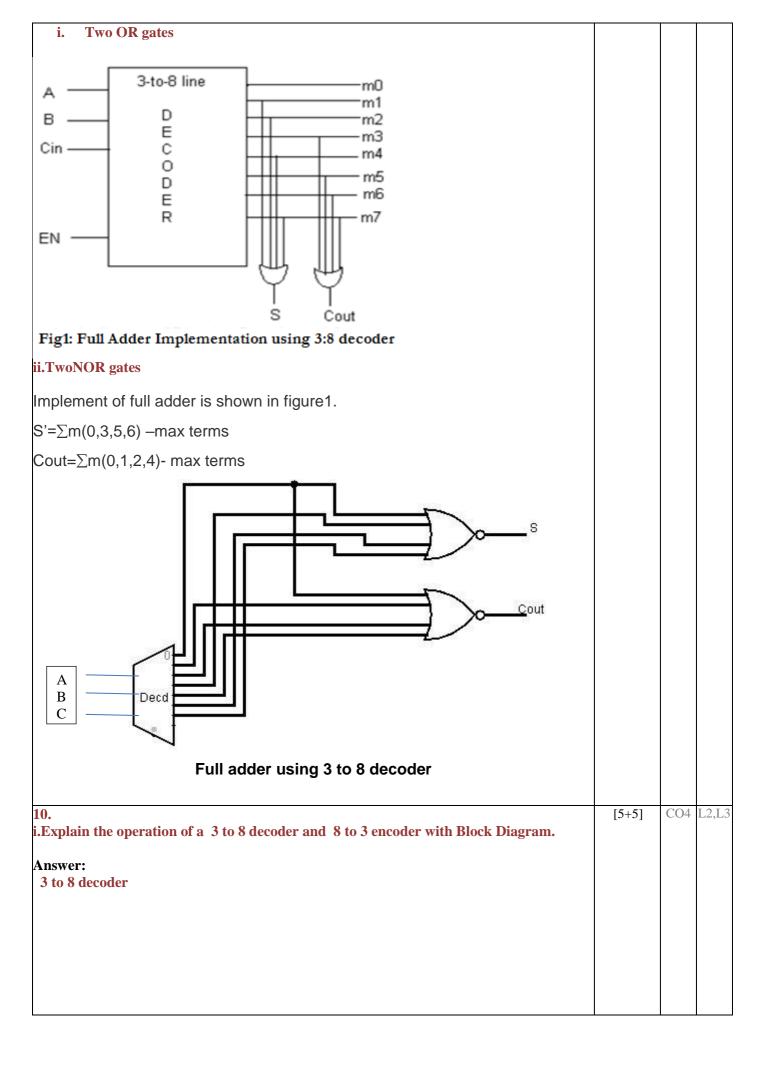
Hazard :in this circuit min term 5 and minterm 7 adjacent to each other but not grouped which causes static -1 hazard. So to this hazard eliminate by adding Min Term A'BD which eliminate the glitch.

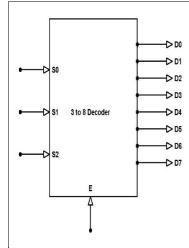
6b. F(A, B, C, D) = m(0, 2, 3, 5, 6, 7, 8, 9, 13, 15)


Find three different minimum AND-OR circuits that implement F.Identify two hazards in each circuit. Then find an AND-OR circuit for *F* for hazards cover


Answer:

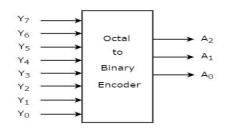
Three different minimum AND-OR circuits


1 st possibility = A'B'D' + A'C+BD+ABC'Omintern 0 & mintern 8 those min torms are adjacent -> cauce 10 hazard (2) Min storm 9 & min storm 13 are not group even sthough those min terms are adjacen Static -1 cause estatic-1 hazard. Hazard -1 - static - 1- hazard is in between 0000 to 1000 Hazard - 2 - Static - 1 - hazard is in between 1001 to 1101.


and possibility () min tourn 0 & 2 10 adjusent to each off. but not grouped, PB 00 Causes static - 1 0 01 014 hazarde. 11 (2) min term 8 & 9 0. 0 10 16 adjucent to each other but not grouped -> causes static-[hazards. O Hazard - Static-1- hazard is in between 0000 ->0010 @ 1-lazard - Sitabie - 1 - hazard is in heter 1000 -> 100# 3rd possibility () min term : 0. 2 2 11,10 adjucent to each other ABED 01 00 but not grouped -> 1 00 Cause etatic - Mater 01 (2) min torm 9 & B 11 adjucent to each 10 other but not groups 10 + causes estatic - 1 - hazarde. O Hazard - static - 1 - hazard ie, in between 0000 -> 0010 Hazard-static-1-hazard ic, in held 1000 ->1101 Then find an AND-OR circuit for F for hazards cover

8. i.Show how two 4-to-1 and one 2-to-1 multiplexers could be connected to form an 8-to-1 MUX with three control inputs. Answer:	[5+5]	CO4	L3
Here I_0 I_1 I_2 I_3 I_4 I_5 I_6 $Here I_0$ to I_7 are inputs to multiplexer , A,B,C are selection inputs and Z is output of multiplexer			L3
ii. Show how four 2-to-1 and one 4-to-1 multiplexers could be connected to form an 8-to-1			
MUX with three control inputs. Answer:			
$\begin{array}{c} I_{0} \\ 2 \\ I_{1} \end{array} \end{array} \xrightarrow{2 \\ \text{MUX}} \end{array}$			
$I_2 \longrightarrow C$ $I_3 \longrightarrow MUX$ $I_4 - to -1$			
$L_{4} \longrightarrow 2-\text{to-1}$ $L_{5} \longrightarrow MUX \longrightarrow Z$ $A B$			
$ \begin{array}{c} $			
Here I_0 to I_7 are inputs to multiplexer , A,B,C are selection inputs and Z is output of multiplexer			
9.	[10]	CO4	L3
Realize a full adder using a 3-to-8 line decoder			
i. two OR gates ii. two NOR gates			
Answer: 1. The A, B and Cin inputs are applied to 3:8			
Truth table full adder circuit decoder as an input.			
Input Input Carry Sum Carry ii. The outputs of decoder m1, m2, m4 and m7 are applied to OR gate as shown in figure to			
bit for bit for bit bit bit bit altering the sum sutant			
number number input output output obtain the sum output.			
A B C _{IN} S C _{OUT} iii. Similarly outputs m3, m5, m6 and m7 are			
0 0 0 0 0 applied to another OR gate to obtain the carry			
0 0 1 1 0 output.			
$\begin{vmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & iv.$ Implement of full adder is shown in figure 1.			
$\begin{vmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & S = \sum m(1,2,4,7) - min \text{ terms}$			
1 1 0 0 1 Cout= $\sum m(3,5,6,7)$ -min terms			
Table1			
1 20101			
1 2010-1			

This decoder circuit gives 8 logic outputs for 3 inputs and has a enable pin. The circuit is designed with AND and NAND logic gates. It takes 3 binary inputs and activates one of


Truth table:

S 0	S 1	S2	E	D0	D1	D2	D3	D4	D5	D6	D7
X	Х	Х	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0	0
1	0	1	1	0	0	1	0	0	1	0	0
1	1	0	1	0	1	0	0	0	0	1	0
1	1	1	1	1	0	0	0	0	0	0	1

When the Enable pin (E) is low all the output pins are low.

8 to 3 encoder: Octal to binary Encoder has eight inputs, Y_7 to Y_0 and three outputs A_2 , $A_1 \& A_0$. Octal to binary encoder is nothing but 8 to 3 encoder. The **block diagram** of octal to binary Encoder is shown in the following figure

At any time, only one of these eight inputs can be '1' in order to get the respective binary code. The **Truth table** of octal to binary encoder is shown below.

		Outputs								
Y ₇	Y ₆	Y₅	Y ₄	Y ₃	Y ₂	Y ₁	Y	A ₂	A ₁	A
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1