

CMR

INSTIT UTE OF

TECHNLOGY
USN

First Internal Test-SEPTEMBER 2019

Sub: Software Engineering Sub Code: 18CS35 Branch: ISE/CSE

Date: 06/09/2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: III A ,B,C OBE

Scheme and Solution

MARKS

1 (a) What are the Attributes of Good software? [04M]

Maintainability

Software should be written in such a way so that it can evolve to meet the changing needs of

customers. This is a critical attribute because software change is an inevitable requirement of a

changing business environment.

Dependability and security

Software dependability includes a range of characteristics including reliability, security and safety.

Dependable software should not cause physical or economic damage in the event of system failure.

Malicious users should not be able to access or damage the system.

Efficiency

Software should not make wasteful use of system resources such as memory and processor cycles.

Efficiency therefore includes responsiveness, processing time, memory utilisation, etc.

Acceptability

Software must be acceptable to the type of users for which it is designed. This means that it must be

understandable, usable and compatible with other systems that they use.

1 (b) Draw the neat diagram, explain the waterfall model of software development process [06 marks]

 There are separate identified phases in the waterfall model:

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty of accommodating change after the process

is underway. In principle, a phase has to be complete before moving onto the next phase.

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing

customer requirements.

 Therefore, this model is only appropriate when the requirements are well-understood and

changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects where a system is developed

at several sites.

 In those circumstances, the plan-driven nature of the waterfall model helps coordinate the

work.

2 (a) Explain an Insulin pump control system with a neat block diagram. [8M]

Collects data from a blood sugar sensor and calculates the amount of insulin required to be injected.

 Calculation based on the rate of change of blood sugar levels.

 Sends signals to a micro-pump to deliver the correct dose of insulin.

 Safety-critical system as low blood sugars can lead to brain malfunctioning, coma and death; high-

blood sugar levels have long-term consequences such as eye and kidney damage.

2 (b) List the fundamental activities of Software Engineering.[2M]

Software specification, software development, software validation and software evolution.

3 (a) With a neat diagram, explain the Requirement Engineering Process. [06M]

 The processes used for RE vary widely depending on the application domain, the people involved and the

organisation developing the requirements.
 However, there are a number of generic activities common to all processes

 Requirements elicitation;
 Requirements analysis;
 Requirements validation;
 Requirements management.

 In practice, RE is an iterative activity in which these processes are interleaved.

3 (b) Differentiate between Functional and Non-Functional Requirements with an

example for each..[04 M]

 Functional requirements

 Statements of services the system should provide, how the system should react to particular inputs and

how the system should behave in particular situations.

 May state what the system should not do.

 Describe functionality or system services.

 Depend on the type of software, expected users and the type of system where the software is used.

 Functional user requirements may be high-level statements of what the system should do.

 Functional system requirements should describe the system services in detail.

 Non-functional requirements

 Constraints on the services or functions offered by the system such as timing constraints, constraints

on the development process, standards, etc.

 Often apply to the system as a whole rather than individual features or services.

 These define system properties and constraints e.g. reliability, response time and storage

requirements. Constraints are I/O device capability, system representations, etc.

 Process requirements may also be specified mandating a particular IDE, programming language or

development method.

 Non-functional requirements may be more critical than functional requirements. If these are not met,

the system may be useless.

 Product requirements

 Requirements which specify that the delivered product must behave in a particular way e.g. execution

speed, reliability, etc.

 Organisational requirements

 Requirements which are a consequence of organisational policies and procedures e.g. process

standards used, implementation requirements, etc.

 External requirements

 Requirements which arise from factors which are external to the system and its development process

e.g. interoperability requirements, legislative requirements, etc.

4 (a) Draw block diagram for illustrating incremental development model. State minimum two benefits and

problems in the incremental development model. [7M]

Incremental development model

Benefits of incremental development:

Lower cost of changes

The cost of accommodating changing customer requirements is reduced. The amount of analysis and

documentation that has to be redone is much less than is required with the waterfall model.

Frequent feedback

It is easier to get customer feedback on the development work that has been done. Customers can

comment on demonstrations of the software and see how much has been implemented.

Faster delivery

More rapid delivery and deployment of useful software to the customer is possible. Customers are

able to use and gain value from the software earlier than is possible with a waterfall process.

Problems with incremental development (from the management perspective):

The process is not visible

Managers need regular deliverables to measure progress. If systems are developed quickly, it is not

cost-effective to produce documents that reflect every version of the system.

System structure tends to degrade as new increments are added

Unless time and money is spent on refactoring to improve the software, regular change tends to

corrupt its structure. Incorporating further software changes becomes increasingly difficult and

costly.

4 (b) Explain the different stages in Software Testing. [3M]

 Component testing

 Individual components are tested independently;

 Components may be functions or objects or coherent groupings of these entities.

 System testing

 Testing of the system as a whole. Testing of emergent properties is particularly important.

 Customer testing
 Testing with customer data to check that the system meets the customer’s needs

5 (a) Elaborate the major themes that are supported in object oriented technology.[06M]

 Several themes pervade OO technology. Few are –

1. Abstraction

Abstraction lets you focus on essential aspects of an application while ignoring details i.e focusing on what

an object is and does, before deciding how to implement it. It’s the most important skill required for OO

development.

2. Encapsulation (information hiding)

 It separates the external aspects of an object (that are accessible to other objects) from the internal

implementation details (that are hidden from other objects). Encapsulation prevents portions of a program

from becoming so interdependent that a small change has massive ripple effects.

3. Combining data and behaviour

Caller of an operation need not consider how many implementations exist. In OO system the data structure

hierarchy matches the operation inheritance hierarchy (fig).

4. Sharing

OO techniques provide sharing at different levels. Inheritance of both data structure and behaviour lets sub

classes share common code. OO development not only lets you share information within an application,

but also offers the prospect of reusing designs and code on future projects.

5. Emphasis on the essence of an object

OO development places a greater emphasis on data structure and a lesser emphasis on procedure structure

than functional-decomposition methodologies.

6. Synergy

Identity, classification, polymorphism and inheritance characterize OO languages.

5 (b) Which are the models used to describe a system from different viewpoints? [04M]

THE THREE MODELS

1. Class Model: represents the static, structural, “data” aspects of a system. It describes the structure of

objects in a system- their identity, their relationships to other objects, their attributes, and their operations.

 Goal in constructing class model is to capture those concepts from the real world that are important to an

application.

 Class diagrams express the class model.

2. State Model: represents the temporal, behavioural, “control” aspects of a system.

State model describes those aspects of objects concerned with time and the sequencing of operations –

events that mark changes, states that define the context for events, and the organization of events and states.

 State diagram express the state model. Each state diagram shows the state and event sequences permitted in

a system for one class of objects. State diagram refer to the other models. Actions and events in a state

diagram become operations on objects in the class model. References between state diagrams become

interactions in the interaction model.

3. Interaction model – represents the collaboration of individual objects, the “interaction” aspects of a

system. Interaction model describes interactions between objects – how individual objects collaborate to

achieve the behaviour of the system as a whole. The state and interaction models describe different aspects

of behaviour, and you need both to describe behaviour fully. Use cases, sequence diagrams and activity

diagrams document the interaction

model.

6 With the help of a sample class model explain the following; [10M]

 i. Association and Association end name

 ii. Qualified association

 iii. Association classes

 iv. Multiplicity

(i)An association is a description of a group of links with common structure and common semantics.E.g. a

person WorksFor a company. An association describes a set of potential links in the same way that a class

describes a set of potential objects.

Association end names

Multiplicity implicitly refers to the ends of associations. For E.g. A one-to many association has two ends an

end with a multiplicity of “one”

an end with a multiplicity of “many”

You can not only assign a multiplicity to an association end, but you can give it a

name as well.

Multiplicity vs Cardinality. Multiplicity is a constraint on the size of a collection.Cardinality is a count of

elements that are actually in a collection.

Therefore, multiplicity is a constraint on cardinality.

Association classes

An association class is an association that is also a class. Like the links of an association, the instances of an

association class derive identity from instances of the constituent classes. Like a class, an association class

can have attributes and operations and participate in associations.

Qualified associations

A Qualified Association is an association in which an attribute called the qualifier disambiguates the

objects for a “many” association ends. It is possible to define qualifiers for one-to-many and many-to-many

associations. A qualifier selects among the target objects, reducing the effective multiplicity

from “many” to “one”.

Ex 1: qualifier for associations with one to many multiplicity. A bank services multiple accounts. An

account belongs to single bank. Within the context of a bank, the Account Number specifies a unique

account. Bank and account are classes, and Account Number is a qualifier. Qualification reduces effective

multiplicity of this association from one-to-many to one-to-one.

7 (a) Design a class diagram for library management system.[03M]

7 (b) Design a class diagram for the following group of classes;School, playground, principal, book, student,

teacher, cafeteria, class room,rest room, and computer.

In the class diagram, add minimum three relationships (associations,

generalization). Use association names where ever needed and show multiplicity.

http://www.gtucampus.com/uploads/studymaterials/Degree%20Engineeringhiren_patelOODM_CE_Final.p

df

http://www.gtucampus.com/uploads/studymaterials/Degree%20Engineeringhiren_patelOODM_CE_Final.pdf
http://www.gtucampus.com/uploads/studymaterials/Degree%20Engineeringhiren_patelOODM_CE_Final.pdf

