

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 1 – September 2019

Solutions

Sub: Software Engineering Code: 18CS35

Date: 06/ 09/2019 Duration: 90 mins Max Marks: 50
Sem: III Branch:

CSE /

ISE

Note: Answer any five questions:

1

a) What are the Attributes of Good software? (4M)

1. Maintainability - Software should be written in such a way so that it can evolve to meet the

changing needs of customers. This is a critical attribute because software change is an

inevitable requirement of a changing business environment.

2. Dependability and security - Software dependability includes a range of characteristics

including reliability, security and safety.Dependable software should not cause physical or

economic damage in the event of system failure. Malicious users should not be able to

access or damage the system.

3. Efficiency - Software should not make wasteful use of system resources such as memory

and processor cycles. Efficiency therefore includes responsiveness, processing time,

memory utilisation, etc.

4. Acceptability - Software must be acceptable to the type of users for which it is designed.

This means that it must be understandable, usable and compatible with other systems

that they use.

b) Explain the Waterfall model with a neat diagram.(6M)

• There are separate identified phases in the waterfall model:

– Requirements analysis and definition

– System and software design

– Implementation and unit testing

– Integration and system testing

– Operation and maintenance

The main drawback of the waterfall model is the difficulty of accommodating change after

the process is underway. In principle, a phase has to be complete before moving onto the

10M

next phase. Inflexible partitioning of the project into distinct stages makes it difficult to

respond to changing customer requirements.Therefore, this model is only appropriate when

the requirements are well-understood and changes will be fairly limited during the design

process. Few business systems have stable requirements.The waterfall model is mostly

used for large systems engineering projects where a system is developed at several sites.In

those circumstances, the plan-driven nature of the waterfall model helps coordinate the

work.

a. 2

2

a) Explain an Insulin pump control system with a neat block diagram.(8M)

Comment on the essential high level requirements that this system must meet. Collects data

from a blood sugar sensor and calculates the amount of insulin required to be injected.

Calculation based on the rate of change of blood sugar levels. Sends signals to a micro-

pump to deliver the correct dose of insulin. Safety-critical system as low blood sugars can

lead to brain malfunctioning, coma and death; high-blood sugar levels have long-term

consequences such as eye and kidney damage. The system shall be available to deliver

insulin when required. The system shall perform reliably and deliver the correct amount of

insulin to counteract the current level of blood sugar.The system must therefore be

designed and implemented to ensure that the system always meets these requirements.

b) List the fundamental activities of Software Engineering.(2M) – any 2

Some fundamental principles apply to all types of software system, irrespective of the

development techniques or types used:

a. Systems should be developed using a managed and understood development

process. Of course, different processes are used for different types of software.

b. Dependability and performance are important for all types of system.

c. Understanding and managing the software specification and requirements (what the

software should do) are important.

d. Where appropriate, you should reuse software that has already been developed

rather than write new software.

10M

b.

3
a. With a neat diagram, explain the Requirement Engineering Process.(6M) 10M

Requirements engineering process

– Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?

• Software engineers work with a range of system stakeholders to find out

about the application domain, the services that the system should provide,

the required system performance, hardware constraints, other systems, etc.

• Elicitation (intelligence), collecting intelligence information from people as

part of human intelligence

– Requirements specification

• Defining the requirements in detail

• The process of writing the user and system requirements in a requirements

document.

• User requirements have to be understandable by end-users and customers

who do not have a technical background.

• System requirements are more detailed requirements and may include more

technical information.

• The requirements may be part of a contract for the system development

• It is therefore important that these are as complete as possible.

•

– Requirements validation

• Checking the validity of the requirements

• Concerned with demonstrating that the requirements define the system that

the customer really wants.

• Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost

of fixing an implementation error.

b)Differentiate between Functional and Non-Functional Requirements with an

example for each.(4M)

Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations.

May state what the system should not do. Describe functionality or system services.

Depend on the type of software, expected users and the type of system where the

software is used. Functional user requirements may be high-level statements of

what the system should do.Functional system requirements should describe the

system services in detail. Problems arise when functional requirements are not

precisely stated.Ambiguous requirements may be interpreted in different ways by

developers and users.Consider the term ‘search’ in requirement 1 -User intention –

search for a patient name across all appointments in all clinics; Developer

interpretation – search for a patient name in an individual clinic. User chooses clinic

then search.

Mentcare system: functional requirements- A user shall be able to search the

appointments lists for all clinics. The system shall generate each day, for each

clinic, a list of patients who are expected to attend appointments that day. Each

staff member using the system shall be uniquely identified by his or her 8-digit

employee number.

Non-functional requirements

Constraints on the services or functions offered by the system such as timing

constraints, constraints on the development process, standards, etc.Often apply to

the system as a whole rather than individual features or services.These define

system properties and constraints e.g. reliability, response time and storage

requirements. Constraints are I/O device capability, system representations, etc.

Process requirements may also be specified mandating a particular IDE,

programming language or development method. Non-functional requirements may

be more critical than functional requirements. If these are not met, the system may

be useless. Non-functional requirements may affect the overall architecture of a

system rather than the individual components. For example, to ensure that

performance requirements are met, you may have to organize the system to

minimize communications between components. A single non-functional

requirement, such as a security requirement, may generate a number of related

functional requirements that define system services that are required.

Examples of non-functional requirements in the Mentcare system

Product requirement

The Mentcare system shall be available to all clinics during normal working hours

(Mon–Fri, 0830–17.30). Downtime within normal working hours shall not exceed

five seconds in any one day.

Organizational requirement

Users of the Mentcare system shall authenticate themselves using their health

authority identity card.

External requirement

The system shall implement patient privacy provisions as set out in HStan-03-2006-

priv.

c.

4

a) Draw block diagram for illustrating incremental development model. State minimum two

benefits and problems in the incremental development model. (7M)

Incremental Model is a process of software development where requirements are broken

down into multiple standalone modules of software development cycle. Incremental

development is done in steps from analysis design, implementation, testing/verification,

maintenance.

Benefits –

The cost of accommodating changing customer requirements is reduced.

– The amount of analysis and documentation that has to be redone is much less than

is required with the waterfall model.

It is easier to get customer feedback on the development work that has been done.

– Customers can comment on demonstrations of the software and see how much has

been implemented.

More rapid delivery and deployment of useful software to the customer is possible.

– Customers are able to use and gain value from the software earlier than is possible

with a waterfall process.

Problems –

• The process is not visible.

– Managers need regular deliverables to measure progress. If systems are developed

quickly, it is not cost-effective to produce documents that reflect every version of

the system.

• System structure tends to degrade as new increments are added.

– Unless time and money is spent on refactoring to improve the software, regular

change tends to corrupt its structure. Incorporating further software changes

becomes increasingly difficult and costly.

10M

b) Explain the different stages in Software Testing. (3M)

• Component testing

– Individual components are tested independently;

– Components may be functions or objects or coherent groupings of these entities.

• System testing

– Testing of the system as a whole. Testing of emergent properties is particularly

important.

• Acceptance/Customer testing

– Testing with customer data to check that the system meets the customer’s needs.

d. 5

5
a)Elaborate the major themes that are supported in object oriented technology. (6M)

1. Abstraction

Abstraction lets you focus on essential aspects of an application while ignoring details i.e

focusing on what an object is and does, before deciding how to implement it. It’s the most

important skill required for OO development.

2. Encapsulation (information hiding)

It separates the external aspects of an object (that are accessible to other objects) from the internal

implementation details (that are hidden from other objects). Encapsulation prevents portions of

a program from becoming so interdependent that a small change has massive ripple effects.

3. Combining data and behavior

Caller of an operation need not consider how many implementations exist. In OO system the data

structure hierarchy matches the operation inheritance

4. Sharing

OO techniques provide sharing at different levels. Inheritance of both data structure and

behavior lets sub classes share common code. OO development not only lets you share

information within an application, but also offers the prospect of reusing designs and code on

future projects.

5. Emphasis on the essence of an object

OO development places a greater emphasis on data structure and a lesser emphasis on procedure

structure than functional-decomposition methodologies.

10M

6. Synergy

 Identity, classification, polymorphism and inheritance characterize OO languages.Each of

these concepts can be used in isolation, but together they complement each other

synergistically.

b)Which are the models used to describe a system from different viewpoints? (4M)

A model is an abstraction, before building any system a prototype may be developed. The

main purpose of model is for understanding of the system.We use three kinds of models to

describe a system from different view points.

1.Class Model for the objects in the system & their relationships.

2. State model—for the life history of objects. Show how systems behave internally

3. Interaction Model—for the interaction among objects. Show the behaviour of systems

in terms of how objects interact with each other

e. 6

6

With the help of a sample class model explain the following;

i. Association and Association end name

ii. Qualified association

iii. Association classes
iv. Multiplicity

I. Association and Association end name

• Associations are the means for establishing relationships among classes.An association is a

description of a group of links with common structure and common semantics.E.g. a person

WorksFor a company. If two classes in a model need to communicate with each other,

there must be link between them, and that can be represented by an association (connector).

• Associations are inherently bi-directional. The association name is usually read in a

particular direction but the binary association may be traversed in either direction.

Association can be represented by a line between these classes with an arrow indicating

the navigation direction. In case arrow is on the both sides, association has bidirectional

association.

Association connects related classes and is also denoted by a line.Show association names

in italics.

• Association end name Associations have ends. They are called ‘Association Ends’. They

may have names (which often appear in problem descriptions). Use of association end

10M

names is optional. But association end names are useful for traversing associations.

 II.Qualified association

• A qualified association is an association in which an attribute called Qualifier the objects

for a ‘many’ association’ end. A qualifier selects among the target objects, reducing the

effective multiplicity from ‘many’ to ‘one’.Both below models are acceptable but the

qualified model adds information.

Adding a qualifier clarifies the class diagram and increases the conveyed information. In

this case, the model including the qualification denotes that the name of a file is unique

within a directory. Example of how a qualified association reduces multiplicity (UML class

diagram).

 III.Association classes

An association class is an association that is also a class.Like the links of an association,

the instances of an association class derive identity from instances of the constituent

classes. Like a class, an association class can have attributes and operations and participate

in associations.

IV. Multiplicity

Multiplicity defines the number of objects associated with an instance of the

association.

UML diagrams explicitly list multiplicity at the end of association lines.Intervals are

used to express multiplicity:

7. a) Design a class diagram for library management system.(3)

b)Design a class diagram for the following group of classes;

 School, playground, principal, book, student, teacher, cafeteria, class room,

rest room, and computer.

In the class diagram, add minimum three relationships (associations,

generalization). Use association names where ever needed and show multiplicity. (7)

f.

g.

