| USN   |                                                                                                                                                                                                                                                    | CMR INSTITUTE OF THE | CM  | RIT |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|
|       | Internal Assessment Test 1 – September 2019                                                                                                                                                                                                        |                      |     |     |
| Sub:  | COMPUTER NETWORKS Sub Code: 17CS52 Bran                                                                                                                                                                                                            | nch: CSE             |     |     |
| Date: | 06/06/2019 Duration: 90 min's Max Marks: 50 Sem / Sec: A,B,C                                                                                                                                                                                       |                      | OE  |     |
| 1 .   | Answer any FIVE FULL Questions                                                                                                                                                                                                                     | MARKS                | CO  | RBT |
| 1 a.  | Explain how Selective- Repeat (SR) protocol overcomes the drawbacks of Go-Back-n protocol. Why the maximum window size is restricted to $2^{k-1}$ , when 'k' specifies the maximum bits in the sequence number field? How it applies flow control? | [10]                 | CO1 | L2  |
| 2 a.  | Suppose that the five measured SampleRTT values (see Section 3.5.3) are 106 ms, 120 ms, 140                                                                                                                                                        | [04]                 | CO1 | L1  |
|       | ms, 90 ms, and 115 ms. Compute the EstimatedRTT after each of these SampleRTT values is                                                                                                                                                            |                      |     |     |
|       | obtained, using a value of $\alpha = 0.125$ and assuming that the value of EstimatedRTT was 100 ms                                                                                                                                                 |                      |     |     |
|       | just before the first of these five samples were obtained. Compute also the DevRTT after each                                                                                                                                                      |                      |     |     |
|       | sample is obtained, assuming a value of $\beta = 0.25$ and assuming the value of DevRTT was 5 ms                                                                                                                                                   |                      |     |     |
|       | just before the first of these five samples was obtained. Last, compute the TCP imeoutInterval                                                                                                                                                     |                      |     |     |
|       | after each of these samples is obtained.                                                                                                                                                                                                           |                      |     |     |
| b.    |                                                                                                                                                                                                                                                    | [10]                 | CO1 | L2  |
| 3a.   |                                                                                                                                                                                                                                                    | [06]                 | CO1 | L2  |
| b.    | Suppose a router receives an IP packet containing 600 data bytes and has to forward the packet to                                                                                                                                                  | [06]                 | CO1 | L1  |
|       | the network with maximum transmission unit of 200 bytes. Assume that the IP header is 20 bytes                                                                                                                                                     |                      |     |     |
|       | long. Show the fragments that the router creates and specify the relevant values in each fragment                                                                                                                                                  |                      |     |     |
|       | header.                                                                                                                                                                                                                                            |                      |     |     |
|       | Or                                                                                                                                                                                                                                                 |                      |     |     |
|       | If a packet having 5000 data bytes arrive at a router, which needs to be forwarded over a                                                                                                                                                          |                      |     |     |
|       | network having MTU 1520 bytes, apply fragmentation and update the details in the                                                                                                                                                                   |                      |     |     |
|       | fragmentation header.                                                                                                                                                                                                                              |                      |     |     |
|       |                                                                                                                                                                                                                                                    |                      |     |     |
| 4.    | With a neat Diagram, explain the router architecture                                                                                                                                                                                               | [10]                 | CO2 | L2  |
| 5.    | With related case studies, explain the causes and costs of congestion in network.                                                                                                                                                                  | [10]                 | CO2 | L2  |
| 6 a   | How End-to End congestion control has been applied in Congestion management at transport layer?                                                                                                                                                    | [6]                  | CO2 | L   |
| b     | What are the different approaches for transition from IPv4 to IPv6?                                                                                                                                                                                | 4                    | CO2 | L1  |
| 7 a   | Explain different address classes defied in IPV4?                                                                                                                                                                                                  | 8                    | CO2 | L2  |
| b     | Identify following IP address classes i). 100.10.5.15 ii) 172.100.50.10 iii)240.60.10.5 iv) 250.20.5.0                                                                                                                                             | 2                    | CO1 | L2  |