&
N

INSTITUTE OF
TECHNOLOGY G, AR
Internal Assesment Test - |
Sub: Microcontroller Code: 17EE52
Date: 06/09/2019 Duration: |90 mins Max Marks: 50 Sem: 5 Branch: EEE
Answer Any FIVE FULL Questions
OBE

Marks | co [RBT

1 Mith a neat diagram, explain the architecture of 8051.

| [10] coi L1

Architecture of 8051

External
Interrupts
INTOl l"qT:[O;;Jcn}:p
(for on-Chip g
Interrupt P ETC =
Control ":;Edr:;“ RAM Timer 0 ‘E’J—g
S Timer 1 ‘E g
¥ £
CcPU A
B
3 -~
N7
asc BUS 4 1/O Ports Serial
Control Port
30PF 30PF l l II I I I l I
— XD RXD
Address/Data
AT3OMHZ e e 5
A brief explanation about each DIOCK.......... ... 5
2 a. Compare Microprocessor and Microcontroller. [06] | CO1 | L1

b. Calculate the time required for 2 machine cycle instruction.
(i) 12MHz (i) 11.0592 MHz

[04] CO2

L3

Si.no Mic roproc essor Microcontrolie r

£] General purpose processor Specific application controlier

2 Contains no RAM, no ROM, no /0 ports Contains RAM, ROM, I/0 ports on chip
on chip itself. itself

3 | Size of RAM/ROM canvary Size of RAM/ROM is fixed

a Makes the system bulkier Makethe systerm compact

s More expensive Less expensive

& It has less bit handling instructions It has more bit handbng instructions

7 Less number of pins have multiplexed more number of pins have multiplexed
functions functions

8 More flexible in designer point of view Less flexible in designer point of view

° Limited power saving options compared Includes bt of power saving features

to microcontrollers

__10 | Eg: Desktop PC,8086,17] __Eg: Digital Camera.8051. msp430
11 Execution faster Compared to pp slower
12 More general purpose registers Less number of gen purpose registers
13 More addressing modes Less addressing modes
14 Design time is more Applcation design time less
15 Microprocessors are based on von Micro controllers are based on
Neumann model/architecture where Harvard architecture where program
program and data are stored in same memory and Data memory are
memory module separate
16 Cannot be used in compact systems and Can be used in compact systems and
hence inefficient hence it is an efficient technique
17 Example code:
ADD AX.BX
ADD AX.CX
ADD AX,DX A, B
18 It cannot be used as stand alone an be used as stand alone.
19 May or may not be real-time application Real-time application oriented
oriented
20 Fig - a Fig -b
uuuuuu
B =] =] [==] =] [==] =
= 1O Poet Temer =g
S 1 | 1 | I Pon
Address B
Fig : (a) Microprocessor Fig : (b) Microcontroller

Any 6 of these

QI OIS . oot e

b. (i) For a two machine cycle instruction, where the crystal frequency is 12 MHz

12 MHz/12 =1 MHz
1/1 MHz =1 ps
2*1=2ys

(i) For a two machine cycle instruction, where the crystal frequency is 11.0592 MHz.....2

11.0592 MHz/12 = 0.9216 MHz
1/0.9216 MHz = 1.085 ps
2*1.085 pis = 2.170 ps

3 Write an assembly language program to convert ASCII to unpaced BCD and vice versa. Also
write ALP to convert ASCII to Decimal and vice versa. Include suitable comments.

ASCII to Unpacked BCD

ORG 00 H

MOV RO, #10H ; Initializing pointer RO

MOV A, @RO :Move pointer contents(ASCII number) to A
ANL A, #0F H :Mask the upper nibble(3)

MOV R2, A ;Move unpacked BCD tOR2........ccoiiiiiiiiiici e, 2.5

Unpacked BCD to ASCII

ORG 00 H

MOV RO, #10H ; Initializing pointer RO

MOV A, @RO :Move pointer contents(Unpacked BCD) to A
ORL A, #30H ;OR 30 H to unpacked BCD to make it ASCII

[10]

COo2

MOV R3, A IMOVE ASCHTTO RS, .. 2.5

L4

ASCII to Packed BCD

ORG 00 H

MOV RO, #10H ; Initializing pointer RO

MOV A, @RO :Move pointer contents(ASCII number) to A

ANL A, #0F H :Mask the upper nibble(3)

MOV R2, A :Move unpacked BCD to R2.

INC RO ;Fetch the other ASCII byte.

ANL A, #0F H :Mask the upper nibble(3)

ORL A, R2 ;Add the first result in R2 with A to get packed BCD

MOV R4, A ‘Move packed BCD tORA. ... 2.5

Packed BCD to ASCII

ORGOOH

MOV RO, #10H ; Initializing pointer RO

MOV A, @RO :Move pointer contents(Packed BCD) to A

ANL A, #0F H :Mask upper nibble

ORL A, #30H ;Add 3 to upper nibble

MOV R5, A ;Move first ASCII to R5

MOV A, @RO ;Fetch packed BCD again

ANL A, #0F0 H ;Mask lower nibble

SWAP A ;Interchange lower and upper nibble

ORL A, #30H ;Add 3 to upper nibble

MOV R6, A ;Move second ASCIHT O RG........covieiiiiiii e, 2.5
4 List and explain different addressing modes of 8051 with suitable examples. [10] @ CO1

Immediate Addressing Mode
The CPU Fan access data in var{ous The source operand is a constant
ways, which are called addressmg » The immediate data must be preceded by

modes the pounq sign, # . .
! » Can load information into any registers,
» Immediate including 16-bit DPTR register
> Register * DPTR can also be accessed as two 8-bit

registers, the high byte DPH and low byte DPL
a 3 % memories E
» Register indirect MOV A, #25H
» Indexed MOV R4, #62

Register Addressing Mode

Direct Addressing Mode
Use registers to hold the data to be g

manipulated

MOV RO, 40H
MOV A, RO
MOV R2,A MOV 56H,A

L1

Indirect Addressing Mode Indexed Addressing Mode

Indexed addressing mode is widely
A register is used as a pointer to the used in accessing data elements of

data look-up table entries located in the
~ Only register RO and R1 are used for this program ROM
purpose

» R2 — R7 cannot be used to hold the
address of an operand located in RAM

The instruction used for this purpose is
MOVC A, @A+DPTR

» Use instruction move, “C" means code

> The contents of A are added to the 16-bit
register DPTR to form the 16-bit address
of the needed data

When RO and R1 hold the addresses of
RAM locations, they must be preceded
by the “@" sign

Each addressing mode with an example carries 2 marks.

5 Explain the following instructions, explaining their expressing mode and byte size. [10] @ CO2
(i) XCH A, @R0O (ii) MOVC A, @A+DPTR (iii) SUBB A, #55H

(iv) DAA (v) ORL C, 100

(1) XCH A, @RO

.. 2
The contents of the accumulator and the location content pointed by RO are exchanged.
Addressing Mode: Indirect
Byte Size: 1

(i) MOVC A, @AFDPTR. ..ot e 2

The content of the location pointed by the sum of accumulator and DPTR will be loaded into
Accumulator.

Addressing Mode: Indexed
Byte Size: 1

(iii) SUBB A, #55H
The immediate data 55 H will be subtraced from the contents of the accumulator along with borrow
And the result will be saved in Accumulator.
Addressing Mode: Immediate
Byte Size: 1

Decimal Adjust is used only after addition and it changes the Hexadecimal result to BCD.
Addressing Mode: Register
Byte Size: 1

(v) ORL C, 100

Logical OR the contents of the location 100d with C and store the result in C.
Addressing Mode: Direct
Byte Size: 1/8

6 Explain the operation of following code with respect to stack [10] @ CO1
MOV SP, #10H

PUSH SP
POP OEOH
\ADD A, #10H

L4

L4

MOV SP, #10H ;Immediate data 10 H will be moved to Stack Pointer....................cooooiiiii. 2.5

PUSH SP ;SP data 10 H will be copied to 11 H location...................ccocoiiiiiiii i, 2.5
POP OEOH ;Data 10 H will be loaded into locaiton OEO H that is Accumulator.................... 2.5
ADD A, #10H ;Immediate data 10H will be added to 10H in accumulator and the sum is saved in A again,2.5

NOTE: Stack PUSH and POP diagrams to be shown.

7 a. Explain ORG, END, DB and EQU directives. [04] | CO2
b. Write a program to add 5 numbers. Numbers are stored between internal RAM 60H | [06] | CO2
and 64H. Store the result in RO and A.

a. ORG is to Originate the program from
END is to End the program at
DB is to define byte
EQU is to equate a constant value to a variable.

Each with an example carries 4 mMarks.o.oii i 4
b. MOV R2, #4
MOV R1, #60 H
MOV A, @R1
REPEAT: INC R1
ADD A, @R1
JC GOTO
SIJMP SKIP
GOTO: INC RO
SKIP: DINZ R2, REPEAT
END
With sUitable COMMENLS.ttt e et e et et 6
8 a. Explain the calculation of checksum byte in ROM with an example. [05] @ CO2

b. Write a program to load accumulator with the value 55H and complement the content| [05] | CO2
of the accumulator 900 times.

a.
o To calculate the checksum byte of a
series of bytes of data
» Add the bytes together and drop the
. . carries
To ensure the integrity of the ROM > Take the 2's complement of the total sum,
contents, every system must perform and it becomes the last byte of the series
the checksum calculation a2 To perform the checksum operation,
» The process of checksum will detect any add all the bytes, including the
corruption of the contents of ROM checksum byte

» The checksum process uses what is called » The result must be zero

a checksum byte » If it is not zero, one or more bytes of data

= The checksum byte is an extra byte that is have been changed
tagged to the end of series of bytes of data
With example Carries 5 Marks.o.iiuiiii e 5
b. MOV A, # 55H
MOV RO, #10

AGAIN: MOV R1, #90
REPEAT: CPL A
DJINZ R1, REPEAT
DJIJNZ RO, AGAIN

L1
L4

L4
L4

10

END

With suitable comments

Write an assembly language program to find cube of a number. [10] @ CO2

ORGOOH
MOV RO, # 30 H
MOV A, @RO
MOV B, A
MUL AB
MOV R4, B
MOV B, @R0O
MUL AB
MOV 50 H, A
MOV R5, B
MOV A, R4
MOV B, @R0
MUL AB

ADD A, R5
MOV 51 H, A
MOV A, B
ADDC A, #00H
MOV 52 H, A
END

With suitable comments

\Write an assembly language program to subtract two 16 bit numbers stored in external memory| [10] | CO2

and store the results in internal memory.

ORGOOH
MOV RO, #30 H

MOV DPTR, #5000 H

MOV A, @DPTR
INC DPL

INC DPL

CLRC

SUBB A, @DPTR
MOV @RO, A
DEC DPL

MOV A, @DPTR
INC DPL

INC DPL

SUBB A, @DPTR
INC RO

MOV @RO, A

;initializing internal memory

;initializing external memory

;move first data from external memory to A

;increment DPL twice to point to second number’s LSB

;clear borrow

;subtract second LSB from first and save the result in A
;move the difference to 30 H internal memory

;point to first MSB

:move first MSB to A from DPTR

;point to second MSB

;subtract the two MSBs along with borrow and save data in internal RAM

L4

L4

