Eighth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Advanced Concrete Technology

Time.*3 hrs.

Max. Marks:100

Note: 1.Answer any FIVE full questions, selecting atleast TWO questions from each part. 2.Use of code IS:10262-2009 is permitted.

3. Assume any missing data suitably.

PART - A

- a. Explain the importance of Bogue's compound in ordinary Portland Cement.
 b. Explain Rheology of concrete in terms of Bingham's Parameters.
 (10 Marks)
 (06 Marks)
 - c. Discuss the importance of transition zone of concrete. (04 Marks)
- 2 a. Mention the different types of superplaciticizer. Explain the mechanism of deflocculation of cement particles by plasticizers with a neat sketch. (10 Marks)
 - b. Discuss the effect of following on the properties of concrete:
 - (i) Fly ash
- (ii) Silica fume.

(10 Marks)

- 3 a. Using IS code 10262:2019, design the mix proportioning for a concrete with M_{35} grade using fly ash with following data:
 - A-1: Stipulations for proportioning
 - (a) Grade Designation: M35
 - (b) Type of cement: OPC43 Confirming IS 8112.
 - (c) Type of mineral admixture: Fly ash
 - (d) Maximum nominal size of aggregate: 20 mm
 - (e) Minimum cement content: 320 kg/m³
 - (f) Maximum water-cement ratio: 0.45
 - (g) Workability: 100mm (Slump)
 - (h) Exposure conditions: Severe (for RCC)
 - (i) Method of concrete placing: Pumping
 - (j) Degree of supervision: Good
 - (k) Type of aggregate: Crushed Angular
 - (1) Maximum cement content: 450 kg/m³
 - (m) Chemical Admixture type: Superplasticizer
 - A-2: Test Data for Materials (Table:1)

Materials	Sp. Gr.	W. A.	Free Moisture	
Cement	3.15	-	11,27	Туре
Coarse Aggregate	2.65	0.5%		I II IS383
Fine Aggregate	2.60	1.0%	Nil	60% 40%
Superplasticizer	1.145	-		Zone-I IS383 for
Fly ash	2.2	-		fine aggregate.

1 of 2

12 4 FEB 2020

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Table: 2 For Exposure conditions (IS:456)

Table.2 For Exposure conditions (15.450)							
Type of exposure	Plain concre	te 🔨	Reinforced concrete				
	Max. W/C	Min. cement	Max.	Min.			
	Ratio	content	W/C	C.C.			
MILD: Completely protected	0.70	220	0.65	250			
weather, aggressive conditions		*	2				
Moderate: Sheltered from heavy	0.60	250	0.55	290			
wind, rain and against freezing							
when saturated with water	0	A	New York				
SEVERE: Exposed to sea water	0.50	310	0.45	320			
alternate wetting and drying,		. //		*			
freezing while wet.							

Note: (Table 2)

- (i) Minimum cement content is based on 20mm aggregate; for 40mm aggregate reduce it by 10% and for 12.5mm aggregate increase by 10%.
- (ii) When the maximum water cement ratio can be controlled, cement content is Table:2, may be reduced by 10%. (15 Marks)
- What are the factors affecting mix design?

(05 Marks)

- What do you understand by carbonation of concrete? Discuss how it influence the corrosion of steel. (08 Marks)
 - b. Define the following terms:
 - (i) Thermal diffusivity
- (ii) Thermal conductivity
- (iii) Specific Heat

(03 Marks)

- Write a short note on following:
 - (i) Plastic shrinkage
- (ii) Permeability of concrete
- (iii) Alkali Aggregate Reaction (09 Marks)

- a. Discuss the following concrete placing methods: 5
 - (i) Shot crete
- (ii) Under-water concreting

(10 Marks)

- What do you mean by RMC? Discuss the different steps involved for Batching process and methods of mixing in RMC. (10 Marks)
- What is FRC? What are the different factors affecting properties of FRC?
- (08 Marks)
- Write a brief note on the technique used for construction in ferrocement.
- (08 Marks)

List the advantages of ferrocement over normal concrete.

(04 Marks)

- Write a brief notes on:
 - (i) Light Weight concrete
 - (ii) High Density concrete.

(10 Marks)

- b. What is High Performance Concrete? Discuss briefly properties of HPC in fresh state and in Hardened State. (10 Marks)
- What are the different factors which affect the strength results of concrete? 8
- (04 Marks)

- Write a short note on following:
 - (i) Rebound Hammer Test
 - (ii) Pulse Velocity Method

24 FEB 2020

(iii) Capping of specimens.

(12 Marks)

What are the different factors affecting the measurement of pulse velocity.

(04 Marks)