Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Theory of Elasticity

Time: 3 hrs Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

- Explain:
 - i) Stress at a point
 - ii) Strain at a point. (10 Marks)
 - Explain the assumptions made in theory of elasticity, and also its applications. (10 Marks)
- What is Airy's stress function? (05 Marks) a.
 - For a plane stress case, derive the compatibility equation in terms of strains and stresses. b. (15 Marks)
- Define the following with sketches and suitable examples: 3
 - i) Plane stress problems.
 - ii) Plane strain problems.

(10 Marks)

b. By means of a strain rosette, the following strains, were recorded during the test on a structural member.

$$\epsilon_{\phi} = 2 \times 10^{-3}$$
, $\epsilon_{(\alpha+\phi)} = 1.35 \times 10^{-3}$, $\epsilon_{(\alpha+\beta+\phi)} = 0.95 \times 10^{-3}$

Determine: i) Magnitude of principal strains and

ii) Orientation of principal planes.

Given that:
$$\phi = 0^{\circ}$$
, $\alpha = \beta = 45^{\circ}$, $\mu = 0.33$, $E = 210$ GPa (10 Marks)

Investigate what problem of plane stress is satisfied by the stress function,

$$\phi = \frac{3F}{4h} \left[xy - \frac{xy^3}{3h^2} \right] + \frac{P}{2}y^2$$

applied to the region included in y = 0, y = h, x = 0, on the side x positive.

(20 Marks)

PART - B

Derive the compatibility equation in polar co-ordinate system. 5

(12 Marks)

For the stress function, $\phi = \frac{P}{\pi}r\theta\sin\theta$. Determine the stress components σ_r , σ_θ and $\tau_{r\theta}$.

- Prove that $(\sigma_r)_{max} = (\sigma_\theta)_{max} = \left(\frac{3+\mu}{8}\right)e\omega^2b^2$ in the case of rotating circular disc of uniform thickness. 6
- Obtain the expressions for stress components in a thin plate with a central circular hole 7 subjected to tensile stress along its longitudinal axis. Hence obtain the stress concentration factor. (20 Marks)

1 of 2

8 a. Derive the differential equation for the torsion problem in the form:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\!\phi = -2G\theta$$

With usual notations.

(08 Marks)

b. Find the stresses at any point of a shaft of elliptical cross section, whose major and minor axes are 2a and 2b respectively. (12 Marks)