ACALORE

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Differentiate between DFA and NFA. Construct DFA to accept the following language. $L = \{\omega : |\omega| \mod 3 \ge |\omega| \mod 2\}$ where $\Sigma = \{a, b\}$. (10 Ma
 - b. Write a procedure to convert NFA to equivalent DFA convert the following NFA into equivalent DFA.

(10 Marks)

- 2 a. Define Regular expression. Write regular expression to accept the following languages $L = \{a^n b^m : n \ge 1, m \ge 1, m \ge 3\}$ (08 Marks)
 - b. Show that every language defined by a regular expression is also defined by a finite automata. (06 Marks)
 - c. Discuss any three applications for Regular expressions.

(06 Marks)

- 3 a. State pumping lemma for regular languages. Show that the following language is not regular. $L = \{0^n : n \text{ is prime number}\}$ (06 Marks)
 - b. If L and M are regular languages, show that $L \cap M$ is also regular.

(06 Marks)

c. Minimize the following DFA using Table filling method.

(08 Marks)

- →A B A

 B A C

 C D B

 *D D A

 E D F

 F G E

 G F G

 H G D
- 4 a. Define Context Free Grammar. Construct CFG for the following language.

 $L = \{0^1 \ 0^j \ 0^k \ | \ j > i + k\}$

(08 Marks)

b. Write leftmost, derivation and construct parse tree for the string 'aabbbb' using the grammar S → AB |∈

 $A \rightarrow aB$

 $B \rightarrow Sb$

(06 Marks)

 $c. \quad \mbox{Define ambiguous grammar. Show that the following language is ambiguous.}$

 $S \rightarrow SS/(S)/()$

(06 Marks)

PART - B

5 a. Define push Down Automata. Construct NPDA for accepting the following language.

 $L = \{\omega \omega^{R} : \omega \in \{a, b\}^{*}\}\$

Show all ID's to process the string 'baab'

(14 Marks)

b. Convert the grammar to equivalent PDA.

 $S \rightarrow 0AA$

 $A \rightarrow 0S | 1S | 0$

(06 Marks)

6 a. Convert the grammar into GNF.

 $S \rightarrow AA \mid 0$

 $A \rightarrow SS | 1$

(08 Marks)

b. Eliminate all ∈ production from the grammar

 $S \rightarrow ABC$

 $A \rightarrow BC \mid a$

 $B \rightarrow bAC \in$

 $C \rightarrow cAB \mid \in$

(06 Marks)

If L is a CEL and R is a regular language then show that $L \cap R$ is a CEL.

(06 Marks)

7 a. Define Turning machine. Design Turing machine that accept the following language $L = \{a^n b^n c^n : n \ge 1\}$ (10 Marks)

b. Write a note on:

i) Multiple Turing Machine

ii) Nondeterministic Turing Machine.

4 FEB 2020

(10 Marks)

8 a. Define Recursively Enumerable language. Prove that Diagnoalization in not recursively enumerable. (08 Marks)

b. Write a note on:

i) Recursive language

ii) Post's correspondence problem.

(12 Marks)