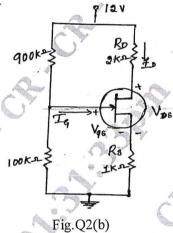
Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1


1 a. Explain the construction and principles of operation of JFET.

(08 Marks)

b. Explain with neat sketches, the operation and parameter of n-channel depletion type MOSFET. (08 Marks)

OR

- 2 a. Discuss characteristics of an ideal op-amp and compare with practical op-amp. (08 Marks)
  - b. For the circuit shown in Fig.Q2(b) determine the valve of drain source voltage ( $V_{Ds}$ ). Assume  $V_{GS} = -0.8V$ .



(08 Marks)

Module-2


- 3 a. What are universal gates? Draw the logic circuit for y = (A + B + C)(A + B + C) using universal gates. (05 Marks)
  - b. Find the minimal SOP of the following Boolean function using K-Map.  $F(a, b, c, d) = \sum m(7, 9, 10, 11, 12, 13, 14, 15)$

(05 Marks)

c. Define Hazards? How to design a static 1 hazard free circuit? Explain with an example.

OR

- 4 a. Simplify the expression  $y = f(A, B, C, D) = \sum m (1, 2, 8, 9, 10, 12, 13, 14)$  using Quine McClusky Method. (10 Marks)
  - b. What is the need of HDL? Write the verilog code for the circuit. Shown in Fig.Q4(b)



(06 Marks)

1 of 2

2 4 JAN 20201

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

|    |      | Module-3                                                                              |             |
|----|------|---------------------------------------------------------------------------------------|-------------|
| 5  | a.   | What is multiplexer? Write the logic circuit and truth table of 4:1 multiplexer.      | (05 Marks)  |
|    | b.   | Explain BCD to Decimal decoder along with circuit diagram.                            | (05 Marks)  |
|    | c.   | What is magnitude comparator? Design and explain 1 bit magnitude comparator.          | (06 Marks)  |
|    |      |                                                                                       |             |
|    |      | OR                                                                                    |             |
| 6  | a.   | Implement the following function using PLA                                            |             |
|    |      | $A(x, y, z) = \sum_{x} m(1, 2, 4, 6)$                                                 |             |
|    |      | B $(x, y, z) = \sum_{x \in S} m(0, 1, 6, 7)$                                          | (06 Marks)  |
|    | b.   | $C(x, y, z) = \sum m(2, 6)$<br>Implement the Boolean function expressed by            | (00 Marks)  |
|    | υ.   | SOP f (a, b, c, d) = $\sum m$ (1, 3, 4, 5, 9, 11, 12) using 8:1 MUX.                  | (06 Marks)  |
|    | c.   | Write a note on parity Checker.                                                       | (04 Marks)  |
|    |      |                                                                                       |             |
|    |      | Module-4                                                                              |             |
| 7  | a.   | What is flip flop? Explain the working of JK master slave flip flop using NAND g      | rates.      |
| ,  | u.   | What is hip hop. Explain the working of the master start map map map assign and       | (08 Marks)  |
|    | b.   | Write the Execution table of SR, D, JK and T flip flop.                               | (04 Marks)  |
|    | c.   | Write the difference between synchronous and Asynchronous counter.                    | (04 Marks)  |
|    |      | OR                                                                                    |             |
| 8  | a.   | Using Positive edge triggered D flip flop, draw the logic diagram of 4bit SIS         | O Register. |
| Ů  |      | Draw the timing diagram to shift binary number 1110 into Register.                    | (05 Marks)  |
|    | b.   | Explain with neat diagram 4 bit switched tail counter                                 | (05 Marks)  |
|    | c.   | Explain how shift Register can be applied for sequence detector.                      | (06 Marks)  |
|    |      |                                                                                       |             |
|    |      | Module-5                                                                              | 1           |
| 9  | a.   | Explain a 3 bit binary Rippledown counter. Give block diagram, truth table waveforms. | (08 Marks)  |
|    | b.   | Design a sequences, a module – 4 Irregular counter with following counting sequences. |             |
|    | υ.   | D dia don                                                                             | (08 Marks)  |
|    |      | D Inp nop. $00 \rightarrow 10 \rightarrow 11 \rightarrow 01$                          |             |
|    |      |                                                                                       |             |
|    |      |                                                                                       |             |
|    | jon, | G. C.                                                                                 |             |
|    | 6    | OR                                                                                    |             |
| 10 | a.   | Explain 4 bit D/A converter.                                                          | (10 Marks)  |
|    | b.   | What is binary ladder? Explain the binary ladder with digital input of 1000.          | (06 Marks)  |
|    |      | ****                                                                                  |             |
|    |      | D-                                                                                    |             |
|    |      |                                                                                       |             |
|    |      | 2 4 JAN 2020J                                                                         |             |
|    |      | Ly Juli Long                                                                          |             |
|    |      |                                                                                       |             |
|    |      | 2 of 2                                                                                |             |
|    |      | 2012                                                                                  |             |
|    |      |                                                                                       |             |
|    |      |                                                                                       |             |
|    |      |                                                                                       |             |
|    | d    |                                                                                       |             |
|    | 6    |                                                                                       |             |
|    | 7400 |                                                                                       |             |
|    |      |                                                                                       |             |