Time: 3 hrs.

15CS54

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020
Automata Theory and Computability

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

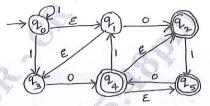
a. Briefly describe the applications of Theory of computation.

(04 Marks)

b. Define DFSM. Build DFSM for the following languages.

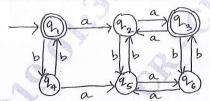
i) $L = \{w \in \{a, b\}^* : \text{ every a in } w \text{ is immediately followed by b} \}$

ii) $L = \{w \in \{a, b\}^* : w \text{ does not contain substring aab}\}.$


(08 Marks)

c. Describe Machine based hierarchy of language classes.

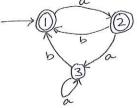
(04 Marks)


OR

2 a. For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps (q) for each state q: (08 Marks)

b. Let M be the following DFSM. Use minDFSM to minimize M.

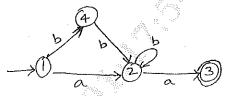
(08 Marks)



Module-2

- 3 a. Define Regular Expression. Write regular expression for the following:
 - i) $L = \{w \in \{a, b\}^* : w \text{ does not end in ba}\}$

ii) $L = \{w \in \{0 - 9\}^* : w \text{ corresponds to the decimal encoding, without leading 0's, of an odd natural number}\}.$ (06 Marks)


b. Consider the FSM M. Use the fsmtoregexheuristic algorithm to construct a regular expression that describes L(M). (05 Marks)

1 of 2

11 JAN 2020

c. Consider the FSM M. Use fsmtoregex algorithm to construct a regular expression that describes L(M).

OR

- Show that regular languages are closed under complement and set difference. (06 Marks) State and prove pumping lemma theorem for regular languages. And show that the language
 - (10 Marks) $L = \{a^n b^n : n \ge 0\}$ is not regular.

Define CFG. Design CFG for the languages.

i) $L = \{a^i b^j | 2i = 3i + 1\}$

ii) $L = \{0^{n+2} \mid 1^n \mid n \ge 1\}.$

(08 Marks)

Define Chomskey Normal form. Convert the following CFG to CNF.

$$S \rightarrow a ACa$$

 $A \rightarrow a \mid B$

 $B \rightarrow C \mid c$

 $C \rightarrow cC \mid E$.

(08 Marks)

- Define Ambiguity. Consider the grammar $E \rightarrow + EE \mid \star EE \mid EE \mid x \mid y$. Find the leftmost, rightmost derivations and parse trees for the string "+* - xyxy". (07 Marks)
 - Define PDA. Design a PDA to accept the following language.

 $L = \{ww^R : w \in \{a, b\}^*\}$. Draw the transition diagram for the constructed PDA. (09 Marks)

Module-4

- Design a TM to accept the language $L = \{a^n \mid b^n \mid n \ge 1\}$. Obtain the transition table and transition diagram. Also show the instantaneous description for the string "aabb". (11 Marks) (05 Marks)
 - Explain the working principle of TM with diagram.

- OR State and prove pumping theorem for CFL's shown that the language $L=\{a^n\ b^n\ c^n: n\geq 0\}$ is 8 (10 Marks) not context free.
 - Explain the hierarchy within the class of CFL's (hierarchy of languages).

(03 Marks)

Show that CFL's are closed under reverse.

(03 Marks)

Module-5

Explain Multitape TM, with diagram.

(05 Marks)

Prove that every language accepted by a multitape TM is acceptable by some standard TM.

(06 Marks)

Explain the model of Linear Bounded Automata.

(05 Marks)

OR

- Write short notes on:
 - a. Undecidable languages.
 - b. Halting problem of TM.
 - Post correspondence problem.
 - d. Church Turing Thesis.

(16 Marks)