Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Operating Systems**

Time: 3 hrs

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- What is operating system? Explain multiprogramming and time sharing systems. (06 Marks) 1
 - Explain dual mode operating in operating system with a neat block diagram. (05 Marks) b.
 - What are system calls? Briefly point out its types.

(05 Marks)

OR

Explain process states with state transition diagram. Also explain PCB with a neat diagram. 2 a.

(06 Marks) (05 Marks)

What is interprocess communication? Explain its types. b.

With a neat diagram, explain the concept of virtual machines.

(05 Marks)

Module-2

For the process listed below, draw Gantt charts using pre-emptive and non-preemptive 3 priority scheduling algorithm. A larger priority number has a higher priority. Calculate Average Weighing Time and Average turnaround time.

Jobs	Arrival Time	Burst Time	Priority :			
J_1	0	6	4			
J_2	3	5	2			
J_3	3	3	6			
J_4	5	5 , 3	3			

(06 Marks)

- Is CPU scheduling necessary? Discuss the five different scheduling criterias used in the (05 Marks) computing scheduling mechanism.
- Explain multithreading models. c.

(05 Marks)

OR

Define semaphores. Explain its usage and implementation. a.

(06 Marks)

Explain Reader-Write problem with semaphore in detail. b.

(05 Marks)

What are monitors? Explain dining Philospher's solution using monitor.

(05 Marks)

Module-3

System consists of five jobs (J₁, J₂, J₃, J₄, J₅) and three resources (R₁, R₂, R₃). Resource type 5 a. R₁ has 10 instances, resource type R₂ has 5 instances and R₃ has 7 instances. The following snapshot of the system has been taken.

Jobs	Alle	Allocation		Maximum		Available			
	R_1	R ₂	R ₃	R_1	R_2	R_3	R_1	R_2	R_3
J_1	0	1 -	0	7	5	3	3	3	2
J_2	2	0.	0	3	2	2			
J_3	3,	0	2	9	0	2			
J_4	2	1	1	2	2	2			
J_5	0	0	2	4	3	3			

Find need matrix and calculate the safe sequence by using Banker's algorithm. Mention the (06 Marks) above system is safe or not safe.

1 of 2

- b. What is dead lock? What are necessary conditions an operating system must satisfy for a dead lock to occur? (05 Marks)
- c. What is a Resource Allocation Graph (RAG)? Explain how RAG is very useful is describing deadly embrace by considering own example. (05 Marks)

OR

- 6 a. What are Translation Load aside Buffer (TLB)? Explain TLB in detail with a simple paging system with a neat diagram. (06 Marks)
 - b. Given the memory partitions of 100 K, 500 K, 200 K, 300 K and 600 K apply first fit, best fit and worst fit algorithms to place 212K, 417K, 112K and 426K. (05 Marks)
 - c. Describe both internal and external fragmentation problems encountered in a contiguous memory allocation scheme. (05 Marks)

Module-4

- 7 a. Consider the following page reference stream: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. How many page faults would occur for LRU and FIFO replacement algorithms assuming 3 frames? Which one of the above is most efficient? (06 Marks)
 - b. Explain demand paging system.

(05 Marks)

c. What is thrashing? How can it be controlled?

(05 Marks)

OΡ

- 8 a. Explain briefly the various operations performed on files. (06 Marks)
 - b. Explain the various access methods of files.

(05 Marks)

c. Explain various allocation methods in implementing file systems.

(05 Marks)

Module-5

9 a. Explain the various Disk Scheduling algorithms with example.

(08 Marks)

b. Explain access matrix method of system protection.

(08 Marks)

OR

10 a. With a neat diagram explain in detail components of a Linux system.

(06 Marks)

b. Explain the different IPC mechanisms available in Linux.

(05 Marks)

c. Explain process scheduling in a Linux system.

(05 Marks)

* * * * *