

## Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Control System**

Time: 3 hrs.

IMR

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

## PART – A

- Write the difference between open loop and closed loop control system.
  - For the mechanical system shown in Fig.Q1(b), obtain the force-voltage and force-current (14 Marks) analogous network.



Fig. 1(b)

- The block diagram of a feedback control system is shown in Fig.Q2(a). Find: 2
  - The transfer function C(S)/E(S) if N(S) = 0
  - The transfer function C(S)/R(S) if N(S) = 0.

(12 Marks)



Fig.Q2(a)

Find the transfer function C(S)/R(S) using Masons gain formula for the signal flow graph (08 Marks) shown in Fig.Q2(b).



Fig. Q2(b) 1 of 3

12 8 JAN 2020

Derive the expression for maximum overshoot.

(06 Marks)

Fig.Q3(b)(i) shows a mechanical vibratory system, when a force of 9.8N is applied to the system the mass oscillates as shown in Fig.Q3(b)(ii). Find the values of M, B and K.

(10 Marks)





The open lop transfer function is given by:

$$G(s) = \frac{10(s+2)}{s(s+3)(s+4)}$$

Find the error constants (Kp, Kv and Ka). Also find the steady state errors.

(04 Marks)

- Explain Routh's criterion for determining the stability of a system and mention its (06 Marks) limitations.
  - Examine the stability by Routh's criterion for the characteristics equation:  $s^6 + 3s^5 + 4s^4 + 6s^3 + 5s^2 + 3s + 2 = 0$ .

(06 Marks)

Find the values of K and P so that the system shown in Fig.Q4(c) oscillates with a frequency (08 Marks) of 2 rad/sec.



## PART - B

State the different rules for the construction of root locus. 5

(08 Marks)

Sketch the root locus for a negative feedback control system whose open loop transfer function is give by

G(S)H(S) = 
$$\frac{K(s+4)}{S(s^2+2s+2)}$$

Comment on its stability.

(12 Marks)

6 a. A unity feedback control system is characterized by an open loop transfer function:

$$G(s)H(s) = \frac{K}{s(1+s)(1+0.1s)(1+0.01s)}$$

Using bode plots, find:

- i) The value of K to give a gain margin of 10 dB
- ii) Value of K to give a phase margin of 25°.

(12 Marks)

b. Determine the transfer function of a system whose magnitude plot is shown in Fig. Q6(b).

(08 Marks)



7 a. Explain Nyquist stability criterion.

(06 Marks)

b. Sketch the Nyquist plot for the open loop transfer function:

$$G(s)H(s) = \frac{10}{(s+2)(s+4)}$$

Determine the stability of the closed loop system by Nyquist criterion.

(10 Marks)

c. Sketch the polar plot for the transfer function:

$$G(s) = \frac{S}{1 + ST}.$$

(04 Marks)

- 8 a. Define the following terms
  - i) State
  - ii) State variables.

(04 Marks)

b. List the properties of state transition matrix.

(04 Marks)

c. Obtain the state transition matrix, for the state model whose matrix A is give by:

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

(12 Marks)

12 8 JAN 2020