USN

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Digital System Design using Verilog

Time: 3 hrs.

BANGALORE

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART – A

What is meant by design methodology? Enlist the basic steps of design methodology with 1 (12 Marks) help of a flowchart.

Explain the concept of real world circuit for, i) Static load levels ii) capacitive and propagation delay.

(08 Marks)

Why it is better to use a low level logic level rather than a high logic level? Explain. 2

(04 Marks)

b. What is bit flip? How to deal with invalid code in the design. (06 Marks)

- Develop a verilog model for a 7-segment decoder that includes an additional input, "BLANK", that overrides the BCD input and causes all segment not to lit. (10 Marks)
- Explain and implement a 4-bit carry look ahead adder circuit. (06 Marks) 3
 - Develop a verilog model of an adder/subtractor for 12-bit unsigned binary numbers. The circuit has data inputs x and y, a data output s, a input mode that is 0 for addition and 1 for subtraction, and an output ovf unf that is 1 when an addition overflow or a subtraction (06 Marks) underflow occurs.
 - Prove that negating a signed integer X is nothing but 2's compliment of X. (05 Marks)
 - What number is represented by the fixed-point binary number 01100010, assuming the binary point is four places from the right? (03 Marks)
- Design and develop circuit and code for decode counter. (05 Marks)
 - Develop a verilog model of a de-bouncer for a push button switch that uses a de-bounce interval of 10ms. Assume the system clock frequency is 50MHz. (10 Marks) (05 Marks)
 - Explain about sequential datapath and control in digital design.

PART - B

= 4 FEB 2020

Explain different memory types.

(10 Marks)

Write about: i) parogrammable array logic ii) FPGAs. b.

(10 Marks)

Explain the elements of embedded computer with a neat diagram.

(10 Marks)

Briefly explain the interfacing with memory with an example.

(10 Marks)

Write a short note on:

i) Multiplexed bases

ii) Open drain bases.

(10 Marks)

- b. Explain the serial transmission technique. Also explain the three basic ways in which we can (10 Marks) synchronize the transmitter and receiver.
- With a neat diagram and flow chart explain the design flow including hardware/software 8 a. (10 Marks)
 - Write a note on design optimization.

(10 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.