2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractices Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Antennas and Propagation**

GALTime: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

Derive relationship between directive gain, effective length and radiation resistance. 1

(08 Marks)

Determine the directivity for the following Intensity patterns:

ii) $U = U_m \sin \theta \sin^2 \phi$; $0 \le \theta \le \pi$, $0 \le \phi \le \pi$. i) $U = U_m \cos^2 \theta$

(06 Marks) (06 Marks)

Derive Power transfer ratio using Fris Transmission formula.

Derive Maxima, Minima and Half power point directions in Array of 'n' elements with 2 equal spacing and currents equal in magnitude with Progressive Phase Shift - End fire (10 Marks)

- b. Four isotropic sources are spaced $\lambda/6$ distance apart. They have a phase difference of $\pi/3$ (10 Marks) between adjacent elements. Find BWFN and MPBW.
- a. Derive an expression for power radiation by current element of short dipole. 3

b. Derive an expression for gain of a half wave Antenna. (08 Marks)

Explain characteristics of patch antenna.

(06 Marks)

(06 Marks)

- State Babinet's principle and explain how it gives rise to the concept of complementary (07 Marks) antenna.
- (07 Marks) Derive an expression for Directivity of Circular Loop Antenna.
 - The diameter of circular loop antenna is 0.042. How many turns of the antenna will give a (06 Marks) radiation resistance of 36Ω ?

PART - B

- Derive an expression for pitch angle Axial ratio of helical antenna using perpendicular 5 (06 Marks) mode.
 - What is basic concept of Reflector antenna? Explain different types of reflector antenna. (06 Marks)
 - Explain following antenna with neat sketch:
 - i) Sleeve Antennas (ii) Omni directional Antennas.

- (08 Marks)
- Explain in brief antenna for satellite communication. What are different design 6 (10 Marks) consideration Receiver and Transmitter case?
 - b. Explain how GPR system differ than general radar systems. What are different (10 Marks) considerations for antenna used in GPR systems?
- a. Derive an expression for Field strength at Receiver for Space wave propagation. (07 Marks) 7
 - Explain tropospheric scatter phenomenon.

(06 Marks)

- c. Define the following: (i) Critical frequency (fc) ii) Maximum usable frequency (MUF) (07 Marks) iii) Skip distance.
- a. Derive an expression for f_{MUF} for flat earth. 8

(10 Marks)

b. In the ionospheric propagation, consider that the reflection takes place at a height 300km and that the maximum density in the ionosphere corresponds to a refraction index of 0.8 at a frequency is the MUF. Take the Earth's curvature into consideration. (10 Marks)
