2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Antennas and Propagation**

Time: 3 hrs.

1

2

3

5

6

7

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

		PART A		
	a.	Derive an expression for the maximum effective aperture and directivity.	(08 Marks)	
	b.	State and prove FRISS transmission formula for radio communication link.	(08 Marks)	
	c.	A radio link has a 26 Watts transmitter connected to an antenna of 1.8 m ² effecti	ve aperture	
	٠.	at 5 GHz. The receiving antenna has an effective aperture of 0.7 m ² and is located	d at 10 km.	
		Find the power delivered to the receiver.	(04 Marks)	
	a.	Derive an expression and draw the field pattern for 2 isotropic point sources of		
		amplitude and same phase.	(10 Marks)	
	b.	Show that the directivity for unidirectional operation is $2(n + 1)$ for an intensity		
		$U = U_m \cos^n \theta$. Also verity the expression for $n = 3$ and compare with the exact d	irectivity.	
			(07 Marks)	
	c.	State and prove power theorem.	(03 Marks)	
		Did in Coult for Stall authors of this linear entenna	(10 Montra)	
	a.	Derive the expression for the far field pattern of thin linear antenna.	(10 Marks) (10 Marks)	
	b.	Derive the radiation resistance of $\lambda/2$ dipole.	(10 Marks)	
L	a.	Explain Babinet's principle with illustrations.	(05 Marks)	
•	b.	Write a note on patch antenna.	(05 Marks)	
	c.	Derive the expression for radiation resistance of loop antenna and also find di	rectivity of	
		small loop and large loop.	(10 Marks)	
		PART-B		
5	a.	With neat sketch, explain the design criteria of horn antenna.	(06 Marks)	
	b.	Calculate directivity of rectangular horn antenna whose height of 78 cm and w	viath of the	
		mouth 8 cm. It operates at 9.6 GHz. Take Aperture efficiency η as 68%.	(04 Marks)	
	c.	Explain the design of log periodic antenna and analyze the three regions of le	og periodic	
		antenna.	(10 Marks)	
(a.	Explain a Yagi-Uda antenna structure with a neat diagram.	(06 Marks)	
,	b.	The state of a frequency of 225 MHz	(04 Marks)	
		Write a note on turnstile antenna and antennas for Ground Penetrating Radars.	(10 Marks)	
7	a.	With a neat sketch, explain and derive an expression for skip distance in term	s of critical	
		frequency and the maximum userable frequency f_{MUF} .	(10 Marks)	
	b.	Define critical frequency and virtual height with sketches.	(06 Marks)	
	c.	Calculate the critical frequency for reflection at vertical incidence if the maxim	um electron	
		density is 1.52×10^6 /cm ³ .	(04 Marks)	

Draw and explain the characteristics of different ionized layers. (10 Marks) Derive an expression for the refractive index of ionosphere. (06 Marks)

A HF radio link is established for a range of 2500 km. If the reflection region of the ionosphere is at a height of 250 km and has a critical frequency of 7 MHz. Calculate (04 Marks) maximum userable frequency f_{MUF}.

24 JAN 2020