2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 Image Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Explain the components of a general purpose image processing system with a neat block diagram.

 (08 Marks)
 - b. Describe the formation of image in an human eye with a neat sketch and illustration.

(08 Marks) (04 Marks)

c. List the applications of image processing.

2 a. Explain the image acquisition with sensor arrays.

(08 Marks)

b. Define image sampling and quantization. Explain the basic concepts with an example.

(08 Marks)

- c. How many minutes would it take to transmit a 1024 × 1024 image with 256 gray levels using 56K band modem. Assume, a packet consists of one start and one stop bit. (04 Marks)
- 3 a. Calculate the transformed image V and basis images

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} V = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

(06 Marks)

b. List the properties of unitary transforms and explain any 2 properties.

(06 Marks)

c. List the properties of 2D –DFT and prove any 2 properties.

(08 Marks)

4 a. Define discrete sine transform. List any 5 properties.

(06 Marks)

b. Develop Hadamard transform for n = 3. Write 4 properties.

(08 Marks)

c. Construct Haar transform matrix for n = 2.

(06 Marks)

PART - B

- 5 a. Define "Image Enhancement". Explain basic gray level transformations in spatial domain.
 (08 Marks)
 - b. For the given 4×4 image having gray scale between [0 -9] get histogram equalized image. Draw the histogram of image before and after equalization.

(06 Marks)

c. Explain image subtraction and image averaging operations with examples.

(06 Marks)

6 a. Explain the basic steps for filtering in the frequency domain. Mention its advantages.

(06 Marks)

- b. Explain sharpening of images in frequency domain using: i) ideal high pass filter ii) Butterworth high pass filter. (08 Marks)
- c. Explain homomorphic filtering approach with a neat block diagram. (06 Marks)

- 7 a. Explain inverse filtering approach and its limitations in image restoration. (06 Marks)
 - b. List the various noise probability density functions along with mathematical expressions and graphs. (08 Marks)
 - c. Discuss the importance of adaptive median filter and highlight the working of adaptive median filters in image restoration. (06 Marks)
- 8 a. Develop a scheme for converting colors from: i) RGB to HIS ii) HIS to RGB. (10 Marks)
 - b. Explain the following pseudo image processing techniques. I) intensity slicing ii) graylevel to color transformations and their applications. (10 Marks)

\$ 4 FEB 2020