(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020

Power Electronics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

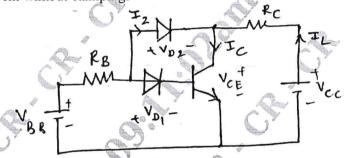
PART - A

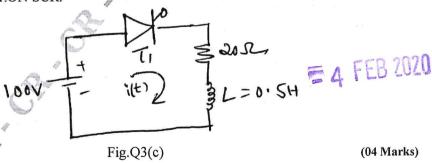
- a. Explain the classification of power semiconductor switching devices, on the basis of control characteristics. (08 Marks)
 - b. Explain different types of power converter systems with circuit and waveforms.
 - c. Draw symbol and characteristics of the following devices: i) SITH ii) SIT (04 Marks)
- 2 a. Using transient model of BJT, explain switching characteristics of power transistor.

b. The collective clamping circuit in Fig.Q2(b) has V_{CC} = 100 V, R_{C} = 1.5 Ω , V_{d_1} = 2.1 V, V_{d_2} = 0.9 V, V_{BE} = 0.7 V, V_{B} = 15 V and R_{B} = 2.5 Ω , β = 16. Calculate:

i) Collector emitter clamping voltage V_{CE}

ii) Collector event without clamping




Fig.Q2(b)

(06 Marks)

c. Compare the features of BJT and MOSFET.

(04 Marks)

- 3 a. Using two transistor analogy, derive an expression for anode event of a SCR. (08 Marks)
 - b. Briefly explain dynamic turn-ON and turn-off characteristics of SCR. (08 Marks)
 - c. If the latching event of SCR shown in Fig.Q3(c) is 4 mA, find the minimum width of gate pulse required to turn-ON SCR.

4 a. The converter circuit shown in Fig.Q4(a) has resistive load of R and delay angle is $\alpha = \frac{\pi}{2}$,

determine:

- (i) Rectifier efficiency
- (ii) Form factor FF
- (iii) Ripple factor RF
- (iv) Transformer utilization factor TUF
- (v) PIV of thyristor.

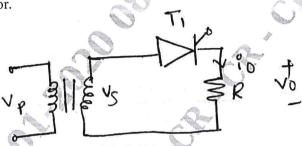
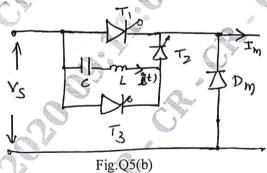


Fig.Q4(a)


(10 Marks)

b. Explain with neat circuit and waveform, single phase full converter with R-load. Derive equation for V_{DC} and V_{rms}. (10 Marks)

PART - B

- 5 a. Explain the principles of self commutation circuit with necessary circuit and waveform.

 Derive equation for capacitor voltage and current. (10 Marks)
 - b. The commutation circuit in Fig.Q5(b) has $C = 30 \mu F$ and inductance $L = 4 \mu H$. The initial capacitor voltage is $V_D = 200 \text{ V}$. Determine the circuit turn-off time t_{off} if load current I_m is (i) 250 A (ii) 50 A.

(10 Marks)

- 6 a. Explain the basic principles of phase angle controller with neat circuit and waveform. Derive equations for RMS and average output voltage. (10 Marks)
 - b. Explain with circuit and waveform, single phase bidirectional controller with resistive loads.

 Derive equation for RMS output.

 (10 Marks)
- Explain with circuit and waveform, principles of step down chopper with R-load. Derive equation for output voltage. (10 Marks)
 - b. Mention the classification of choppers. Briefly explain each type.

(10 Marks)

8 a. Explain with circuit and waveform, single phase bridge inverter.

(10 Marks)

b. Explain with circuit and waveform, single phase current source inverter.

(10 Marks)

* * * * *