Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020

Image Processing

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define a digital image. With neat diagram, explain the components of image processing system. (10 Marks)
 - b. Briefly explain:
 - i) Brightness adaptation and discrimination
 - ii) Weber ratio
 - iii) Mach bands

(10 Marks)

2 a. Explain in detail the image acquisition using the three principal sensor arrangements.

(10 Marks)

b. Consider the two image subsets, S_1 and S_2 , shown in the Fig.Q2(b). For $V = \{1\}$, determine and explain whether these are (i) 4-adjacent (ii) 8-adjacent (iii) m-adjacent.

$$S_1$$
 S_2 S_2 S_1 S_2 S_3 S_4 S_5 S_5 S_6 S_7 S_8 S_9 S_9

Fig.Q2(b)

(06 Marks)

- c. Consider the image shown in Fig.Q2(c). Let $V = \{1, 2\}$
 - (i) compute length of shortest m-path
 - (ii) compute D₄ distance between the points p and q.

(04 Marks)

- 3 a. Define unitary transforms. Explain the properties of unitary transforms. (06 Marks)
 - b. Calculate the transformed image V and the basis images for the orthogonal matrix A and image U.

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$U = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$

1 of 2

(06 Marks)

- c. Explain in brief the following properties of 2D Discrete Fourier Transforms:
 - (i) Separability
- (ii) Translation

(08 Marks)

11 3 FEB 2020

- 4 a. Define 2-D forward and inverse discrete cosine transform, and mention its properties.
 (08 Marks)
 - b. Generate 8 × 8 Hadamard transform matrix. The core matrix $H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ indicate its

sequency. (04 Marks)

c. Explain Haar transformation with its properties. Compute Haar transformation of image $F = \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix}$. (08 Marks)

PART - B

- 5 a. With necessary graphs, explain the spatial enhancement operations:
 - i) Power law transformation
 - ii) Gray level slicing
 - iii) Contrast stretching
 - iv) Bit plane slicing (12 Marks)
 - Derive the equation for histogram equalization. (08 Marks)
- 6 a. Explain with a block diagram, the basic steps for image filtering in frequency domain.
 - (08 Marks)

(06 Marks)

- b. Explain highpass butterworth filter.
- c. List the steps involved in homomorphic filtering. (06 Marks)
- 7 a. Explain the basic model for image degradation/restoration process. (06 Marks)
 - b. Explain inverse filtering with necessary equations. (06 Marks)
 - c. Explain any four noise models with necessary equations and graphs. (08 Marks)
- 8 a. Explain different color models. (10 Marks)
 - b. Explain pseudo coloring. (06 Marks)
 - c. How many minutes it will take to transmit a 1024 × 1024 colour image with 256 shades of RGB. Assume 56 Kbps modern is used for transmission? (04 Marks)