HSTITUTE OF	GBGS SCHEME
Way DYSV	

17EC36

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Obtain an expression for electric field intensity at any given point due to 'n' number of point charges.

 (04 Marks)
 - Four 10 nC positive charges are located in the z = 0 plane at the corners of a square 8 cm on a side. A fifth 10 nC positive charge is located at a point 8 cm distant from the other charges. Calculate the magnitude of the total force on this fifth charge for ∈ = ∈0.
 - c. Find the total charge contained in a 2 cm length of the electron beam for 2 cm < z < 4 cm, $\rho = 1$ cm and $\rho_v = -5$ e^{-100pz} $\mu c/m^3$. (08 Marks)

OR

- 2 a. Define electric flux and electric flux density, and also, obtain the relationship between electric flux density and electric field intensity. (06 Marks)
 - b. Infinite uniform line charges of 5 nC/m lie along the (positive and negative) x and y axes in free space, Find \vec{E} at P(1, 2, 3).
 - c. Given a 60 μC point charge located at the origin, find the total electric flux passing through:
 - (i) That portion of the sphere r = 26 cm bounded by $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$
 - (ii) The closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm. (04 Marks)

Module-2

3 a. State and obtain mathematical formulation of Gauss law.

(07 Marks)

- b. Given $\overrightarrow{D} = 6\rho \sin\left(\frac{\phi}{2}\right) \hat{a}_{\rho} + 1.5\rho \cos\left(\frac{\phi}{2}\right) \hat{a}_{\phi} \text{ C/m}^2$. Evaluate both sides of divergence theorem for the region bounded by $\rho = 2\text{m}$, $\phi = 0$, $\phi = \pi \text{ rad}$, z = 0 and z = 5m. (08 Marks)
- c. Derive the point form of current continuity equation.

(05 Marks)

OR

- 4 a. Given the non-uniform field $\vec{E} = y\hat{a}_x + x\hat{a}_y + 2\hat{a}_z$ V/m, determine the work expended in carrying 2C from B(1, 0, 1) to A(0.8, 0.6, 1), along the shorter arc of the circle; $x^2 + y^2 = 1$, z = 1.
 - b. Derive the expression for potential field resulting from point charge in free-space. (07 Marks)
 - Find the value of volume charge density at p(r = 1.5 m, θ = 30°, ϕ = 50°), when $\vec{D} = 2r \sin \theta \cos \phi \, \hat{a}_r + r \cos \theta \cos \phi \, \hat{a}_\theta r \sin \phi \, \hat{a}_\phi \, C/m^2$. (06 Marks)

Module-3

5 a. Using Gauss law derive Poisson and Laplace equations.

(05 Marks)

(05 Marks)

b. State and prove uniqueness theorem.

(10 Marks)

c. Calculate $\Delta \vec{H}_2$ at $P_2(4, 2, 0)$ resulting from $I_1 \Delta \vec{L}_1 = 2\pi \hat{a}_z \, \mu Am$ at $P_1(0, 0, 2)$.

11 n JAN 2020

6 a. Show that $\nabla^2 V = 0$, for $V = (5\rho^4 - 6\rho^{-4})\sin 4\phi$.

(05 Marks)

- b. Evaluate both sides of Stoke's theorem for the field $H = 6xy \hat{a}_x 3y^2 \hat{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let positive direction of $d\vec{s}$ be \hat{a}_z . (08 Marks)
- c. State and explain Ampere's circuital law. Using the same, obtain the expression for \overrightarrow{H} at any given point due to the infinite length filamentary conductor, carrying current I.

(07 Marks)

Module-4

7 a. Obtain an expression for Lorentz force equation.

(05 Marks)

- Obtain the relationship between magnetic fields at the boundary of two different magnetic media. (09 Marks)
- c. Derive the expression for force between two infinitely long. Straight, parallel filamentary conductors, separated by distance d, carrying equal and opposite currents, I. (06 Marks)

OR

8 a. Given a ferrite material which operates in a linear mode with B=0.05 T, calculate values for magnetic susceptibility, magnetization and magnetic field intensity. Given $\mu_r=50$.

(05 Marks)

- Obtain expressions for magneto motive force (mmf) and reluctance in magnetic circuits by making use of analogy between electric and magnetic circuits.
 (08 Marks)
- c. Two differential current elements, $I_1 \Delta \vec{L}_1 = 3(10^{-6}) \hat{a}_y \text{ Am}$ at $P_1(1, 0, 0)$ and $I_2 \Delta \vec{L}_2 = 3(10^{-6})(-0.5 \hat{a}_x + 0.4 \hat{a}_y + 0.3 \hat{a}_z)$ Am at $P_2(2, 2, 2)$ are located in free space. Find vector force exerted on $I_2 \Delta \vec{L}_2$ by $I_1 \Delta \vec{L}_1$.

Module-5

- 9 a. Explain the inadequacy of Ampere's circuital law for time-varying fields. Obtain a suitable correction for the same, which will remain consistent for both time and non-time-varying fields.

 (05 Marks)
 - b. Let $\mu = 10^{-5}$ H/m, $\epsilon = 4 \times 10^{-9}$ F/m, $\sigma = 0$ and $\rho_v = 0$. Find K (including units) so that the following pair of fields satisfy Maxwell's equations: $\vec{E} = (20y Kt)\hat{a}_x V/m$, $\vec{H} = (y + 2 \times 10^6 t)\hat{a}_z A/m$. (05 Marks)
 - c. Starting from Maxwell's curl equation, obtain the equation of Poynting's theorem and interpret the same. (10 Marks)

OR

- 10 a. Express Maxwell's equations in phasor form as applicable to free-space. Using the same, obtain vector Helmholtz equation in free space. (09 Marks)
 - b. Obtain an expression for skin depth when an electromagnetic wave enters a conducting medium. Also, calculate the skin depth when a 160 MHz plane wave propagates through aluminum of conductivity 10^5 C/m, $\epsilon_r = \mu_r = 1$ (05 Marks)
 - c. Starting from equation of Faraday's law, obtain the point form of Maxwell's equation concerning spatial derivative of \vec{E} and time derivative of \vec{H} . (06 Marks)