

15EE45

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020

Electromagnetic Field Theory

Time: 3 hrs.

EANGALORE

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What is a unit vector? Illustrate its significance in the vector representation. (02 Marks)
 - b. Explain Cartesian coordinate system and differential elements in Cartesian coordinate system. (04 Marks)
 - c. Define:
 - i) Dot product and cross product of two vectors.
 - ii) Gradient of a scalar field
 - iii) Divergence and curl of a vector field.

(10 Marks)

OR

- 2 a. State and explain Coulomb's law of force between the two point charges. (05 Marks)
 - b. A point charge Q = 30nc is located at the origin in Cartesian co-ordinates. Find the electric flux density \overline{D} at (1, 3, -4) m. (05 Marks)
 - c. State and explain Gauss law in electrostatics.

(06 Marks)

Module-2

- 3 a. Derive an expression for energy expanded in making a point charge in an electric field.
 (08 Marks)
 - b. Derive an expression for the electric intensity at any point in the negative of the potential gradient at that point or $E = -\nabla V$. (08 Marks)

OR

- 4 a. With necessary relations, define current and current density. (03 Marks)
 - b. Explain the boundary conditions for a boundary between two di-electric materials.

(08 Marks)

- c. A capacitor consists of two metal plates each 100cm² placed parallel and 2mm apart. The whole of space between the plates is filled with a di-electric having a relative permittivity of 3.5. A potential difference of 500V is maintained between the plates. Calculate:
 - i) The capacitance
 - ii) The charge on capacitor
 - iii) Electric flux density
 - iv) Potential gradient.

(05 Marks)

Module-3

- 5 a. Derive Poisson's and Laplace equations starting from point form of Gauss law. (06 Marks)
 - b. Verify that the potential field given below satisfies the Laplace's equation $V = 2x^2 3y^2 + z^2$
 - c. State and prove Unigueness theorem.

(08 Marks)

OR

6 a. State and explain Biot-Savart's law.
b. State and explain Stoke's theorem.
c. Derive an expression for vector magnetic potential.
(06 Marks)
(06 Marks)

Module-4

- 7 a. Derive an expression for the force between differential current elements. (08 Marks)
 - b. A point chart of Q = -1.2C has velocity $\sqrt{v} = (5ax + 2ay 3az)m/s$. Find the magnitude of the force exerted on the charge if,
 - i) $\overline{E} = -18\overline{a}x + 5\overline{a}y 10\overline{a}z \text{ v/m}$
 - ii) $\overline{B} = -4\overline{a}x + 4\overline{a}y + 3\overline{a}z$ T
 - iii) Both are present simultaneously

(08 Marks)

OR

- 8 a. Derive the boundary conditions at the interface between two magnetic materials of different permeabilities. (08 Marks)
 - b. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6cm diameter. The length of the tube is 60cm and the solenoid is in air. (02 Marks)
 - c. Define mutual inductance. Derive an expression for mutual inductance of two different coils.

 (06 Marks)

Module-5

- 9 a. Explain briefly Faraday's law and displacement current for time varying fields. (07 Marks)
 - b. In a given lossy dielectric medium conduction current density $J_c = 0.02 Sin 10^9 \, t(A/m^2)$. Find the displacement current density if $\sigma = 10^3 \, s/m$ and $\epsilon_r = 6.5$. (03 Marks)
 - Write Maxwell's equations in point form and in integral form for time varying fields.

(06 Marks)

OR

- 10 a. Discuss the propagation of uniform plane waves in a lossless medium. (06 Marks)
 - b. Define poynting vector and explain the power flow associated with it.

(06 Marks)

- c. A 300MHz uniform plane wave propagates through fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 78$. Calculate:
 - i) The attenuation constant
 - ii) The phase constant
 - iii) The wave length.

(04 Marks)