STITUTE OF	a	CBCS SCHEME	
usn			

17EE32

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020

Electric Circuit Analysis

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive the expression for Delta-star transformation.

(06 Marks)

b. Using source transformation, find the power delivered by 50V source shown in Fig.Q.1(b). (06 Marks)

c. Find the voltage a/c 20Ω resistor in the network shown in Fig.Q.1(c).

(08 Marks)

OR

2 a. Determine the equivalent resistance between the terminals AB for the network shown in Fig.Q.2(a). (06 Marks)

b. Find the node voltages V_1 , V_2 and V_3 in the circuit shown in Fig.Q.2(b) using nodal analysis. (08 Marks)

Fig.Q.2(b)

c. Draw the dual of the network shown in Fig.Q.2(c)

(06 Marks)

1 of 4

Module-2

3 State and explain superposition theorem. (06 Marks)

For the circuit shown in Fig.Q.3(b) obtain Thevinins equivalent circuit as seen from terminals p-q. (08 Marks)

Fig.Q.3(b)

Find the voltage ' V_x ' and apply reciprocity theorem to the networks shown in Fig.Q.3(c). (06 Marks)

OR

State and explain Norton's theorem.

(06 Marks)

Find the current I_a in the circuit shown in Fig.Q.4(b) by applying superposition theorem.

(08 Marks)

Fig.Q.4(b)

Find the current through 16Ω resistance using Morton's theorem for Fig.Q.4(c) (06 Marks)

Module-3

- a. Show that in series resonant circuit the resonant frequency is equal to the geometric mean of half power frequencies. (06 Marks)
 - b. A circuit shown in Fig.Q.5(b), the switch 'K' is changed from position 1 to 2 at t = 0. The steady state having reached before closing the switch. Find the values of

$$i(t)$$
, $\frac{di(t)}{dt}$ and $\frac{d^2i(t)}{dt^2}$ at $t = 0^+$

(08 Marks)

Fig.Q.5(b)

A series RLC circuit has $R = 2\Omega$, L = 2mH and $C = 10\mu F$. Calculate Q factor, bandwidth, resonant frequency and half power frequencies. (06 Marks) Show that a parallel resonant circuit will resonate for all frequencies when $R_L = R_C = \sqrt{\frac{L}{C}}$?

b. In the circuit shown in Fig.Q.6(b) initially switch 'K' is kept open for long time. At t = 0, switch K is closed. Obtain the expression for current in the circuit for t > 0.

(06 Marks)

Find the value of R₁ such that the circuit shown in Fig.Q.6(c) is resonant.

(08 Marks)

Module-4

Find the inverse Laplace transform of the following:

i)
$$F(s) = \frac{s+2}{s(s+3)(s+4)}$$

ii)
$$F(s) = \frac{(s-2)}{s(s+1)^3}$$

(06 Marks)

State and prove initial value and final value theorem.

(08 Marks)

Obtain the Laplace transform of the gate function shown in Fig.Q.7(c

(06 Marks)

OR

Using Laplace transform determine the current in circuit shown in Fig.Q.8(a) when switch (06 Marks) K is closed at t = 0. Assume zero initial condition.

Fig.Q.8(a)

Find the Laplace transform of periodic functions shown in Fig.Q.8(b)

(08 Marks)

Fig.Q.8(b)

Find initial value and final value of the following equations:

i)
$$F(s) = \frac{s^3 + 7s^2 + 5}{s(s^3 + 3s^2 + 4s + 2)}$$
 ii) $F(s) = \frac{s(s+4)(s+8)}{(s+1)(s+6)}$

ii)
$$F(s) = \frac{s(s+4)(s+8)}{(s+1)(s+6)}$$

(06 Marks)

Module-5

9 a. An unbalanced 3-phase, 4-wire star connected load has balanced voltages of 208V, with ABC phase sequence. Calculate the line currents and neutral current.

$$Z_A = 10\Omega$$
; $Z_B = 15 \boxed{30}\Omega$; $Z_C = 10 \boxed{-30^\circ \Omega s}$

(06 Marks)

b. Derive Z-parameters in terms of y and h-parameters.

(08 Marks)

c. Find Y-parameters for the network shown in Fig.Q.9(c)

(06 Marks)

OR

- 10 a. Determine the line currents and total power supplied to a delta connected load of $Z_{ab} = 10 \frac{1}{60^{\circ}} \Omega$, $Z_{bc} = 20 \frac{90^{\circ}}{20} \Omega$, $Z_{ca} = 25 \frac{1}{30^{\circ}} \Omega$. Assume 3-phase 400V, ABC sequence. (06 Marks)
 - b. Determine the transmission parameters for the networks shown in Fig.Q.10(b).

(08 Marks)

c. Define Z-parameters and Y-parameters and write equivalent circuits.

(06 Marks)