Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for S_{lco} and S_{VB} of collector to base bias circuit.

(08 Marks)

b. Design a suitable Clipper circuit to the output shown in Fig Q1(b). Assume silicon diode.

Fig Q1(b)

(05 Marks)

c. Find I_c , V_E , V_B , V_C and V_{CE} for the circuit shown in Fig 1(c). Assume silicon transistor with $\beta = 60$.

Fig Q1(c)

(07 Marks)

OR

2 a. Explain how a transistor can be used as a switch.

(07 Marks)

b. Determine I_E , I_B , V_{CE} , V_{CB} , V_C , and V_E for the network shown in Fig Q2(b). Assume silicon transistor with $\beta = 60$.

Fig Q2(b)

(07 Marks)

c. Determine V_o for the network shown in Fig Q2(c) the frequency of i/p signal is 1KHz. Assume ideal diode.

Fig Q2(c)

(06 Marks)

1 of 3

L (1 JAN 2020

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-2

3 a. For the network shown in Fig Q3(a) determine z_i, z_o, A_v and A_I

Fig Q3(a)

(08 Marks)

- b. Derive an expression for z_i, z_o, A_v for emitter follower configuration using approximate hybrid model. (08 Marks)
- c. Obtain the expression for Miller i/p capacitance.

(04 Marks)

- 4 a. Draw the complete hybrid equivalent model of a transistor. Derive an expression for z_i , z_o , A_I and A_v . (10 Marks)
 - b. For the common base amplifier shown in Fig Q4(b), determine: i) z_i ii) A_1 iii) A_V . Give hie = 1.6k Ω , hfe = 110, hre = 2×10⁻⁴, hoe = 20 μ A/v.

Fig Q4(b)

(10 Marks)

Module-3

- 5 a. For the Darlington emitter, follower shown in Fig Q5(a)
 - i) Calculate the dc bias voltages V_B, V_E, V_c and currents I_B and I_C
 - ii) Calculate the i/p and o/p impedances
 - iii) Determine the voltage and current gains
 - iv) The ac o/p voltage for $V_i = 120 \text{mV}$.

Fig Q5(a)

(10 Marks)

- b. For the cascaded arrangement shown in Fig Q5(b), calculate:
 - i) The loaded voltage gain of each stage
 - ii) The total gain of the system Av and Avi
 - iii) The loaded current gain of each stage
 - iv) The total current gain of the system.

Fig Q5(b)

2 of 3

(10 Marks)

6 a. List the advantages of negative feedback.

(10 Marks)

- b. Derive an expression for input resistance of current series and current shunt feedback amplifier. (04 Marks)
- c. Negative feedback to be used to reduce noise from an amplifier by 90% i) what mast the percentage negative feedback to accomplish this, if the initial voltage gain is 50?

ii) What will be the voltage gain with feedback.

(06 Marks)

Module-4

- 7 a. Derive an expression for frequency of oscillation of RC phase shift oscillator. (10 Marks)
 - b. With a neat circuit diagram, explain the working of complementary class B power amplifier.
 (06 Marks)
 - c. The following distortion readings are available for a power amplifier. $D_2 = 0.2$, $D_3 = 0.02$, $D_4 = 0.06$ with $I_1 = 3.3$ A and $R_C = 4\Omega$.
 - i) Calculate THD ii) Determine the fundamental power iii) calculate the total power (04 Marks)

OR

- 8 a. With a neat circuit diagram, explain the working of Hartley oscillator. (06 Marks)
 - b. For a class B amplifier providing a 20V peak signal to a 16Ω load and a power supply of $V_{CC} = 30V$, determine the i/p power, o/p power and efficiency. (06 Marks)
 - c. Explain the classification of power amplifier based on Q- point.

(08 Marks)

Module-5

- 9 a. Draw the circuit a fixed bias JFET amplifier and its equivalent circuit. Hence obtain the expression Z_{in}, Z₀ and A_V. (10 Marks)
 - b. A JFET has device parameter of $g_{mo} = 10mV$ and $I_{DSS} = 12mA$. When the device is suitably biased, the drain current was found to be 8mA. Determine: i) V_P ii) g_m iii) V_{GS} (06 Marks)
 - c. Give the comparison of FET over BJT.

(04 Marks)

OR

- 10 a. With a neat sketch, explain the construction and working principle of N-channel enhancement type MOSFET and also explain its static drain characteristics. (10 Marks)
 - b. Obtain the expression for trans conductance g_m of JFET.

(04 Marks)

c. For the voltage divider bias configuration shown in Fig Q10(c). Determine the value of R_s , if $V_D = 12V$ and $V_{GSQ} = -2V$.

(06 Marks)

3 of 3

& M JAN 2020