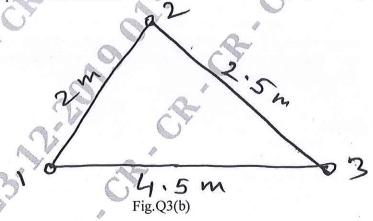
Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the advantages of high voltage transmission with suitable expressions. (08 Marks)
 - b. A transmission line has a span of 150 m between level supports. The conductor has a cross sectional area of 2 cm². The tension in the conductor is 2000 kg. If the specific gravity of the conductor materials is 9.9 gm/cm³ and wind pressure is 1.5 kg/m length, calculate the sag. What is the vertical sag? (12 Marks)


OR

- 2 a. Define: (i) ACSR (ii) GTACSR (iii) String efficiency (iv) Vibration damper (08 Marks)
 - b. Each line of a 3-phase system is suspended by a string of 3 similar insulators. If the voltage across the line unit is 17.5 KV, calculate the line to neutral voltage. Assume that the shunt capacitance between each insulator and earth is 1/8th of the capacitance of the insulator itself. Also find the string efficiency.

 (12 Marks)

Module-2

- 3 a. Derive an expression for the inductance of a conductor due to internal and external flux.
 - b. The three conductors of a 3 phase line are arranged at the corners of a triangle of side 2m, 2.5 m and 4.5 m, Calculate the inductance per km of the line when the conductors are regularly transposed. The diameter of each conductor is 1.24 cm. [Refer Fig.Q3(b)]

(08 Marks)

OR

- a. Derive the expression for line to neutral capacitance for a 3 phase overhead line when the conductors are symmetrically spaced. (12 Marks)
 - b. A single phase transmission line has two parallel conductors 3 metre apart, radius of each conductor being 1 cm. Calculate the capacitance of the line per km. Given that $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$. (08 Marks)

1 of 2

1 JAN 2020

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

		Module-3	
5	a.	Explain the nominal π method for obtaining the performance calculation	of medium
		transmission line. Draw the corresponding vector diagram.	(10 Marks)
	b.	A short 3 ϕ transmission line with an impedance of (6 + J8) Ω per phase has s	
		receiving end voltages of 120 KV and 110 KV respectively for some receiving e	nd load at a
		p.f. of 0.9 lagging. Determine:	
		(i) Power output	(10 Manla)
		(ii) Sending end power factor.	(10 Marks)
		OR	
6	a.	Develop the generalized circuit constants for:	
U	u,	(i) Short transmission line	
		(ii) Medium line using nominal T method.	(10 Marks)
	b.	Differentiate different types of overhead transmission line.	(06 Marks)
	c.	Write a short note on Ferranti effect.	(04 Marks)
		Module-4	
7	a.	Define corona. What are the factors which affect corona?	(06 Marks)
	b.	Explain with reference to corona:	
		(i) Critical descriptive voltage	(00 Montes)
	_	(ii) Visual critical voltage Explain methods of reducing corona effect in an overhead transmission line.	(08 Marks) (06 Marks)
	c.	Explain methods of reducing colonia effect in an overhead transmission line.	(00 Marks)
		OR	
8	a.	Define grading of cables. Explain inter sheath grading of cable.	(08 Marks)
•	b.	Derive an expression for the insulation resistance of a single core cable.	(08 Marks)
	c.	Write the comparison between ac and dc cable.	(04 Marks)
		Module-5	
9	a.	Explain Radial and Ring main distributor	(08 Marks)
	b.	A 2 wire dc distributor 200 metres long is uniformly loaded with 2 A/metre. R	esistance of
		single wire is $0.3 \Omega/\text{km}$. If the distributor is fed at one end. Calculate:	
		(i) The voltage drop upto a distance of 150 m from feeding point(ii) The maximum voltage drop.	(12 Marks)
		(ii) The maximum voltage drop.	(12 MAINS)
		OR	
10	a. 4	Define:	
		(i) Reliability	
	46	(ii) Power quality	
		(iii) Reliability aids	(08 Marks)
	b.	Explain the requirements of good distribution system.	(08 Marks)
	c.	Explain the effect of disconnection of neutral in a 3 phase 4 wire systems.	(04 Marks)