

17MAT11

First Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the nth derivative of sin 2x cos x.

(06 Marks)

b. Prove that the following curves cuts orthogonally $r = a(1 + \sin \theta)$ and $r = a(1 - \sin \theta)$.

(07 Marks)

c. Find the radius of the curvature of the curve $r = a \sin n\theta$ at the pole.

(07 Marks)

OR

2 a. If
$$\tan y = x$$
, prove that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. (06 Marks)

b. With usual notations, prove that
$$\tan \phi = \frac{\tau d\theta}{dr}$$
.

(07 Marks)

c. Find the radius of curvature for the curve $n^2y = a(x^2 + y^2)$ at (-2a, 2a).

(07 Marks)

Module-2

3 a. Using Maclaurin's series prove that
$$\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + \dots$$
 (06 Marks)

b. If
$$U = \cot^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, prove that $x\frac{\partial U}{\partial x} + y\frac{\partial U}{\partial y} = -\frac{1}{4}\sin 2U$. (07 Marks)

c. Find the Jacobian of
$$u = x^2 + y^2 + z^2$$
, $v = xy + yz + zx$, $w = x + y + z$.

OR

4 a. Evaluate
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x}$$

(06 Marks)

(07 Marks)

b. Find the Taylor's sense of $\log(\cos x)$ about the point $x = \frac{\pi}{3}$ upto the third degree.

(07 Marks)

c. If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

(07 Marks)

Module-3

- 5 a. If $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$ represents the parametric equation of a curve then, find velocity and acceleration at t = 1. (06 Marks)
 - b. Find the constants a and b such that $\overrightarrow{F} = (axy + z^3)i + (3x^2 z)j + (bxz^2 y)k$ is irrotational. Also find a scalar function ϕ such that $\overrightarrow{F} = \nabla \phi$. (07 Marks)

1 of 2

c. Prove that $div(curl \bar{A}) = 0$.

(07 Marks)

OR

- 6 a. Find the component of velocity and acceleration for the curve $\vec{r} = 2t^2i + (t^2 4t)j + (3t 5)k$ at the points t = 1 in the direction of i 3j + 2k.
 - b. If $\overrightarrow{t} = \nabla(xy^3z^2)$, find div \overrightarrow{t} and curl \overrightarrow{t} at the point (1, -1, 1). (07 Marks)
 - c. Prove that $\operatorname{curl}(\operatorname{grad} \phi) = 0$. (07 Marks)

Module-4

- 7 a. Prove that $\int_{0}^{2} \frac{x^4}{\sqrt{4-x^2}} dx = 3\pi \text{ using reduction formula.}$ (06 Marks)
 - b. Solve $(x^2 + y^2 + x)dx + xydy = 0$. (07 Marks)
 - c. Find the orthogonal trajectory of $r^n = a \sin n\theta$. (07 Marks)

OF

- 8 a. Find the reduction formula for $\int \cos^n x dy$ and hence evaluate $\int_0^{\pi/2} \cos^n x dx$. (06 Marks)
 - b. Solve $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$. (07 Marks)
 - c. A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes. (07 Marks)

Module-5

9 a. Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing to row echelon form.

(06 Marks)

- b. Find the largest eigen and the corresponding eigen vector for $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking the
 - initial approximation as [1, 0.8, -0.8]^T by using power method. Carry out four iterations.
- c. Show that the transformation $y_1 = 2x_1 2x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is regular. Find the inverse transformation. (07 Marks)

OF

- 10 a. Solve the equations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 by using Gauss Seidal method. Carryout three iterations taking the initial approximation to the solution as (1, 0, 3).
 - b. Diagonalize the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. (07 Marks)
 - c. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form by orthogonal transformation. (07 Marks)