17MAT21

Second Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Engineering Mathematics - II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Solve
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$
 (06 Marks)

b. Solve
$$(D^2 - 4)y = Cosh(2x - 1) + 3^x$$
 (07 Marks)

c. Solve
$$(D^2 + 1)y = Secx$$
 by the method of variation of parameters. (07 Marks)

OR

2 a. Solve
$$D^{3} - 9D^{2} + 23D - 15$$
) $y = 0$ (06 Marks)

b. Solve
$$y'' - 4y' + 4y = 8 (\sin 2x + x^2)$$
 (07 Marks)

c. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2$$
 by the method of undetermined coefficients. (07 Marks)

3 a. Solve
$$(x^2D^2 + xD + 1)y = \sin(2\log x)$$
 (06 Marks)

b. Solve
$$x^2p^2 + 3xyp + 2y^2 = 0$$
 (07 Marks)

c. Find the general and singular solution of Clairaut's equation
$$y = xp + p^2$$
. (07 Marks)

4 a. Solve
$$(2x+1)^2$$
 y" - 2 $(2x+1)$ y' - 12y = 6x
b. Solve $p^2 + 2py \cot x - y^2 = 0$ (07 Marks)
c. Find the general solution of $(p-1)e^{3x} + p^3 e^{2y} = 0$ by using the substitution $X = e^x$, $Y = e^y$.

b. Solve
$$p^2 + 2py \cot x - y^2 = 0$$
 (07 Marks)

c. Find the general solution of
$$(p-1)e^{3x} + p^3 e^{2y} = 0$$
 by using the substitution $X = e^x$, $Y = e^y$.

(07 Marks)

5 a. Form the partial differential equation by eliminating the function from
$$Z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$$
. (06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x$$
 siny for which $\frac{\partial z}{\partial y} = -2\sin y$ when $x = 0$ and $z = 0$ when y is an odd

multiple of
$$\frac{\pi}{2}$$
. (07 Marks)

c. Derive one dimensional wave equation
$$\frac{\partial^2 U}{\partial t^2} = C^2 \frac{\partial^2 U}{\partial x^2}$$
. (07 Marks)

OR

- 6 a. Form the partial differential equation by eliminating the function from $f(x+y+z,\,x^2+y^2+z^2)=0 \eqno(06\,\text{Marks})$
 - b. Solve $\frac{\partial^2 z}{\partial y^2} + z = 0$ given that $z = \cos x$ and $\frac{\partial z}{\partial y} = \sin x$ when y = 0. (07 Marks)
 - c. Obtain the variable separable solution of one dimensional heat equation $\frac{\partial U}{\partial t} = C^2 \frac{\partial^2 U}{\partial x^2}$.

 (07 Marks)

Module-4

7 a. Evaluate
$$\int_{0.1}^{2.2} (x^2 + y^2) dx dy$$
 (06 Marks)

- b. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration. (07 Marks)
- c. Derive the relation between Beta and Gamma function as $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. (07 Marks)

OR

8 a. Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (x^2 + y^2 + z^2) dx dy dz$$
 (06 Marks)

- b. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$. (07 Marks)
- c. Prove that $\int_{0}^{\pi/2} \sqrt{\sin\theta} \, d\theta = \pi$ (07 Marks)

9 a. Find the Laplace transform of $\left[\frac{\text{Module-5}}{\text{Cosat}-\text{Cosbt}}\right]$. (06 Marks)

b. Express the function $f(t) = \begin{cases} Sint & 0 < t \le \frac{\pi}{2} \\ Cost & t > \frac{\pi}{2} \end{cases}$ in terms of unit step function and hence find

Laplace transform. (07 Marks)

Find $L^{-1} \left(\frac{s+2}{s^2 - 2s + 5} \right)$ (07 Marks)

OR

- 10 a. Find the Laplace transform of the periodic function $f(t) = t^2$, 0 < t < 2. (06 Marks)
 - b. Using convolution theorem obtain the Inverse Laplace transform of $\frac{1}{s^3(s^2+1)}$. (07 Marks)
 - c. Solve by using Laplace transform $y'' + 4y' + 4y = e^{-t}$. Given that y(0) = 0, y'(0) = 0.

 (07 Marks)
