17MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansion of $f(x) = x - x^2$ in $(-\pi, \pi)$, hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + - - - - \frac{1}{2^2}$ (08 Marks)

Find the half range cosine series for the function $f(x) = (x-1)^2$ in $0 \le x \le 1$. (06 Marks)

c. Express y as a Fourier series upto first harmonics given:

x	0	60°	120°	180°	240°	300°
y	7.9	7.2	3.6	0.5	0.9	6.8

(06 Marks)

OR

2 a. Obtain the Fourier series for the function:

$$f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } \frac{-3}{2} < x \le 0 \\ 1 - \frac{4x}{3} & \text{in } 0 \le x < \frac{3}{2} \end{cases}$$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

(08 Marks)

b. If
$$f(x) = \begin{cases} x & \text{in } 0 < x < \frac{\pi}{2} \\ \pi - x & \text{in } \frac{\pi}{2} < x < \pi \end{cases}$$

Show that the half range sine series as

$$f(x) = \frac{4}{\pi} \left[\sin x - \frac{\sin 3x}{3^2} - \frac{\sin 5x}{5^2} - \dots \right].$$

(06 Marks)

c. Obtain the Fourier series upto first harmonics given:

х	0	ing[2	3	4	5	6
у	9	18	24	28	26	20	9

(06 Marks)

Module-2

3 a. Find the complex Fourier transform of the function:

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases} \text{ and hence evaluate } \int_{a}^{\infty} \frac{\sin x}{x} dx.$$

(08 Marks)

b. Find the Fourier cosine transform of e^{-ax}.

(06 Marks)

c. Solve by using z – transforms $u_{n+2} - 4u_n = 0$ given that $u_0 = 0$ and $u_1 = 2$.

(06 Marks)

1 of 3 19 8 DEC 2019

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

OR

4 a. Find the Fourier sine and Cosine transforms of:

$$f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & elsewhere \end{cases}.$$

(08 Marks)

b. Find the Z – transform of: i) n^2 ii) ne^{-an} .

(06 Marks)

c. Obtain the inverse Z – transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$

(06 Marks)

Module-3

5 a. Obtain the lines of regression and hence find the co-efficient of correlation for the data:

X	1	3	4	2	5	8	9.	10	13	15
У	8	6	10	8	12	16	16	10	32	32

(08 Marks)

b. Fit a parabola $y = ax^2 + bx + c$ in the least square sense for the data:

X	1	2	· 3	4	5
у	10	12	13	16	19

(06 Marks)

c. Find the root of the equation $xe^x - \cos x = 0$ by Regula – Falsi method correct to three decimal places in (0, 1).

OR

6 a. If 8x - 10y + 66 = 0 and 40x - 18y = 214 are the two regression lines, find the mean of x's, mean of y's and the co-efficient of correlation. Find σ_y if $\sigma_x = 3$. (08 Marks)

b. Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the data:

	1755 1971				17 19	
No. of petals	5	6	7	.8	9	10
No. of flowers	133	55	23	7	2	2

(06 Marks)

c. Using Newton-Raphson method, find the root that lies near x = 4.5 of the equation tanx = x correct to four decimal places. (06 Marks)

Module-4

7 a. From the following table find the number of students who have obtained marks:

i) less than 45 ii) between 40 and 45.

Marks	30 – 40	40 – 50	50 – 60	60 - 70	70 – 80
No. of students	31	42	51	35	31

(06 Marks)

b. Using Newton's divided difference formula construct an interpolating polynomial for the following data:

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

and hence find f(8).

(08 Marks)

c. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $\frac{3}{8}$ th rule. (06 Marks)

OR

8 a. In a table given below, the values of y are consecutive terms of a series of which 23.6 is the 6th term. Find the first and tenth terms of the series by Newton's formulas.

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)

b. Fit an interpolating polynomial of the form x = f(y) for data and hence find x(5) given:

х	2	10	17
у	1	3	4

(06 Marks)

c. Use Simpson's $\frac{1}{3}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub-intervals.

(06 Marks)

Module-5

- 9 a. Verify Green's theorem in the plane for $\phi_c(3x^2 8y^2)dx + (4y 6xy)dy$ where C is the closed curve bounded by $y = \sqrt{x}$ and $y = x^2$. (08 Marks)
 - b. Evaluate $\int_{c} xy dx + xy^2 dy$ by Stoke's theorem where C is the square in the x y plane with vertices (1, 0)(-1, 0)(0, 1)(0, -1). (06 Marks)
 - c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area. (06 Marks)

OR

- 10 a. If $\vec{F} = 2xy \hat{i} + yz^2 \hat{j} + xz \hat{k}$ and S is the rectangular parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1, z = 3 evaluate $\iint_{\vec{F}} \hat{n} \, ds$. (08 Marks)
 - b. Derive Euler's equation in the standard form viz $\frac{\partial f}{\partial y} \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0$. (06 Marks)
 - c. Find the external of the functional $I = \int_{0}^{\pi/2} (y^2 y^{12} 2y \sin x) dx$ under the end conditions $y(0) = y(\pi/2) = 0$. (06 Marks)
