Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020
Advanced Mathematics - II

Advanced Matnematic

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. If $[l_1, m_1, n_1]$ and $[l_2, m_2, n_2]$ be the direction cosines of two lines subtending an angle θ between them then prove that $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$. (06 Marks)
 - b. Find the angle between two lines whose direction cosines satisfy the relations 1 + m + n = 0 and 2 Im + 2 nl mn = 0 (07 Marks)
 - c. Find the co-ordinates of the foot of the perpendicular from A(1,1,1) to the line joining B(1,4,6) and C(5,4,4). (07 Marks)
- 2 a. Find the equation of the plane which bisects the line joining (3, 0, 5) and (1, 2, -1) at right angles. (06 Marks)
 - b. Show that the points (2, 2, 0), (4, 5, 1), (3, 9, 4) and (0, -1, -1) are coplanar. Find the equation of the plane containing them. (07 Marks)
 - c. Find the shortest distance and the equations of the line of shortest distance between the lines: $\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1} \text{ and } \frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}.$ (07 Marks)
- 3 a. Show that the position vectors of the vertices of a triangle $\vec{a} = 4\hat{i} + 5\hat{j} + 6\hat{k}$, $\vec{b} = 5\hat{i} + 6\hat{j} + 4\hat{k}$ and $\vec{c} = 6\hat{i} + 4\hat{j} + 5\hat{k}$ form an isosceles triangle. (06 Marks)
 - b. Prove that the points with position vectors $4\hat{i}+5\hat{j}+\hat{k}$, $\hat{j}+\hat{k}$, $3\hat{i}+9\hat{j}+4\hat{k}$ and $-\hat{i}+5\hat{j}+4\hat{k}$ are coplanar. (07 Marks)
 - c. A particle moves along the curve $x = 2t^2$, $y = t^2 4t$ and z = 3t 5 where t is the time t. Find the components of velocity and acceleration in the direction of the vector $\hat{i} 3\hat{j} + 2\hat{k}$ at t = 1. (07 Marks)
- 4 a. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$, $x^2 + y^2 z^2 = 3$ at (2,-1,2). (06 Marks)
 - b. Find the directional derivatives of the function $\phi = x^2yz + 4xz^2$ at (1,-2,-1) along $2\hat{i} \hat{j} 2\hat{k}$ (07 Marks)
 - c. Find div \vec{F} and curl \vec{F} at the point (1,-1, 1) where $\vec{F} = \nabla(xy^3z^2)$. (07 Marks)
- 5 a. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$ then prove that,

(i)
$$\nabla (\mathbf{r}^n) = \mathbf{n} \mathbf{r}^{n-2} \overset{\rightarrow}{\mathbf{r}}$$
 (ii) $\nabla \cdot (\mathbf{r}^n \cdot \overset{\rightarrow}{\mathbf{r}}) = (\mathbf{n} + 3) \mathbf{r}^n$ (06 Marks)

- b. Show that $\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2y^2z + xy)\hat{k}$ is irrotational and hence find a scalar function ϕ such that $\vec{F} = \nabla \phi$. (07 Marks)
- c. Find the value of the constant 'a' such that $\vec{A} = y(ax^2 + z)\hat{i} + x(y^2 z^2)\hat{j} + 2xy(z xy)\hat{k}$ is Solenoidal. For this value of 'a' show that curl \vec{A} is also solenoidal. (07 Marks)

MATDIP401

6 a. Find the Laplace transform of, (i)
$$\sin 5t \cos 2t$$
 (ii) $(3t+2)^2$ (06 Marks)

b. Find the Laplace transform of
$$\frac{\cos at - \cos bt}{t}$$
. (07 Marks)

7 a. Find the inverse Laplace transform of
$$\frac{s+5}{s^2-6s+13}$$
. (06 Marks)

b. Find
$$L^{-1}\left\{\log\left(\frac{s+a}{s+b}\right)\right\}$$
. (07 Marks)

c. Find
$$L^{-1} \left\{ \frac{s}{(s^2 + a^2)^2} \right\}$$
. (07 Marks)

- 8 a. Using convolution theorem find the Laplace transform of $\frac{1}{s(s^2 + a^2)}$. (10 Marks)
 - b. Solve the differential equation, $y'' + 5y' + 6y = 5e^{2x}$ under the condition y(0) = 2, y'(0) = 1 using Laplace transform. (10 Marks)

* * * * *