USN					

Internal Assessment Test 1 – March 2018

Sub:	Engineering Physics				Sub Code:	17PHY22	Branch:	All			
Date:	13/03/2018	Duration:	90 mins	Max Marks:	50	Sem / Sec:	II/ A,B,C,D,E,F and G			OBE	
Note: Value of Constants: $h = 6.625 \times 10^{-34} \text{Js}$ $k = 1.38 \times 10^{-23} \text{ J/K}$ $m = 9.11 \times 10^{-31} \text{ kg}$. $e = 1.6 \times 10^{-19} \text{C}$, $c = 3 \times 10^8 \text{ m/s}$							RKS	СО	RBT		
1 (a)		1		nck's quantum t ayleigh-Jeans lav			,	_	07]	CO1	L3
(b)	If the wavelength of the maximum intensity (black body radiation) emitted by the sun is at 490 nm calculate the temperature of the sun (given that Wien's constant is 2.898x10 ⁻³ m-K).						O nm [03]	CO1	L2	
2 (a)	Define phase v velocity.	elocity and g	roup velocity	. Derive the rela	tion b	etween group	velocity and p	ohase [06]	CO1	L2
(b)	What are matter potential differen			roglie wavelengt	h of tl	ne electron acc	celerated throug	gha [04]	CO1	L3
3 (a)	Show that an el	ectron cannot	exist inside t	he nucleus using	Heise	enberg's uncer	tainty principle	. [07]	CO1	L3
(b)	Calculate the min		•		•	•	that is emitted	by [03]	CO1	L3

4 (a)	What is Compton effect? Calculate the wavelength of the X-rays scattered by the electron at 180°, if the wavelength of incident X-ray is 1.5 Å.	[04]	CO1	L3
(b)	Derive time independent Schrodinger wave equation for one dimension.	[06]	CO1	L2
5 (a)	Derive the expression for energy Eigen value and Eigen function for a particle in a one dimensional potential well of infinite height.	[07]	CO1	L3
(b)	An electron is bound in a one dimensional potential well of width 1 nm. Find the energy values (in eV) of the electron in the ground state and second excited state.	[03]	CO1	L2
6 (a)	Explain the merits of quantum free electron theory.	[06]	CO2	L2
(b)	What is Fermi factor? Calculate the probability of occupation of an energy state $0.02~\text{eV}$ above the Fermi level at temperature $T=300~\text{K}$.	[04]	CO2	L3
7 (a)	Obtain an expression for the electrical conductivity of a metal from quantum mechanical consideration.	[07]	CO2	L3
(b)	What are the assumptions of classical free electron theory	[03]	CO2	L1